Cargando…
iEnhancer-DCSA: identifying enhancers via dual-scale convolution and spatial attention
BACKGROUND: Due to the dynamic nature of enhancers, identifying enhancers and their strength are major bioinformatics challenges. With the development of deep learning, several models have facilitated enhancers detection in recent years. However, existing studies either neglect different length moti...
Autores principales: | Wang, Wenjun, Wu, Qingyao, Li, Chunshan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339552/ https://www.ncbi.nlm.nih.gov/pubmed/37442977 http://dx.doi.org/10.1186/s12864-023-09468-1 |
Ejemplares similares
-
iEnhancer-ECNN: identifying enhancers and their strength using ensembles of convolutional neural networks
por: Nguyen, Quang H., et al.
Publicado: (2019) -
iEnhancer-DCSV: Predicting enhancers and their strength based on DenseNet and improved convolutional block attention module
por: Jia, Jianhua, et al.
Publicado: (2023) -
iEnhancer-EBLSTM: Identifying Enhancers and Strengths by Ensembles of Bidirectional Long Short-Term Memory
por: Niu, Kun, et al.
Publicado: (2021) -
iEnhancer-DCLA: using the original sequence to identify enhancers and their strength based on a deep learning framework
por: Liao, Meng, et al.
Publicado: (2022) -
iEnhancer-GAN: A Deep Learning Framework in Combination with Word Embedding and Sequence Generative Adversarial Net to Identify Enhancers and Their Strength
por: Yang, Runtao, et al.
Publicado: (2021)