Cargando…
Preclinical trial of the effectiveness of a safety nasogastric tube to detect the tube position based on tidal volume and pepsin assay results in the gastrointestinal tract of Macaca fascicularis
BACKGROUND: Tube misplacement into the tracheobronchial tract is associated with pneumothorax in 0.5% of cases. NGT verification only detects the position of the tube at the end of the procedure. Therefore, a safe nasogastric tube (SNGT) was created to detect the NGT position in real time in a simpl...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339581/ https://www.ncbi.nlm.nih.gov/pubmed/37443035 http://dx.doi.org/10.1186/s12938-023-01128-5 |
Sumario: | BACKGROUND: Tube misplacement into the tracheobronchial tract is associated with pneumothorax in 0.5% of cases. NGT verification only detects the position of the tube at the end of the procedure. Therefore, a safe nasogastric tube (SNGT) was created to detect the NGT position in real time in a simple and inexpensive way. This study aimed to prove the effectiveness of the SNGT prototype in Macaca fascicularis. RESULT: An SNGT producing 50% of the TV had 100% sensitivity and specificity in detecting the position of the tube at 100% of the TV, with a sensitivity of 100% and a specificity of 87.5%. There was a significant difference between the movement of the SNGT 50% TV and SNGT 100% TV airbags (p ≤ 0.05). However, there was no significant difference between the accuracy of placement of the 50% TV SNGT, 100% TV SNGT, and conventional NGT (p > 0.05). The pepsin enzyme had better sensitivity (100%) than pH paper (91.66%) in detecting the end-of-procedure tube position. This research has the potential to advance into human clinical trials. CONCLUSION: SNGTs are highly effective in detecting the NGT position inside the respiratory and digestive tracts to prevent misplacement. |
---|