Cargando…

A Regularized Second-Order Correlation Method from Green’s Function Theory

[Image: see text] We present a scalable single-particle framework to treat electronic correlation in molecules and materials motivated by Green’s function theory. We derive a size-extensive Brillouin-Wigner perturbation theory from the single-particle Green’s function by introducing the Goldstone se...

Descripción completa

Detalles Bibliográficos
Autores principales: Coveney, Christopher J. N., Tew, David P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339685/
https://www.ncbi.nlm.nih.gov/pubmed/37367932
http://dx.doi.org/10.1021/acs.jctc.3c00246
_version_ 1785071901410852864
author Coveney, Christopher J. N.
Tew, David P.
author_facet Coveney, Christopher J. N.
Tew, David P.
author_sort Coveney, Christopher J. N.
collection PubMed
description [Image: see text] We present a scalable single-particle framework to treat electronic correlation in molecules and materials motivated by Green’s function theory. We derive a size-extensive Brillouin-Wigner perturbation theory from the single-particle Green’s function by introducing the Goldstone self-energy. This new ground state correlation energy, referred to as Quasi-Particle MP2 theory (QPMP2), avoids the characteristic divergences present in both second-order Møller–Plesset perturbation theory and Coupled Cluster Singles and Doubles within the strongly correlated regime. We show that the exact ground state energy and properties of the Hubbard dimer are reproduced by QPMP2 and demonstrate the advantages of the approach for larger Hubbard models where the metal-to-insulator transition is qualitatively reproduced, contrasting with the complete failure of traditional methods. We apply this formalism to characteristic strongly correlated molecular systems and show that QPMP2 provides an efficient, size-consistent regularization of MP2.
format Online
Article
Text
id pubmed-10339685
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-103396852023-07-14 A Regularized Second-Order Correlation Method from Green’s Function Theory Coveney, Christopher J. N. Tew, David P. J Chem Theory Comput [Image: see text] We present a scalable single-particle framework to treat electronic correlation in molecules and materials motivated by Green’s function theory. We derive a size-extensive Brillouin-Wigner perturbation theory from the single-particle Green’s function by introducing the Goldstone self-energy. This new ground state correlation energy, referred to as Quasi-Particle MP2 theory (QPMP2), avoids the characteristic divergences present in both second-order Møller–Plesset perturbation theory and Coupled Cluster Singles and Doubles within the strongly correlated regime. We show that the exact ground state energy and properties of the Hubbard dimer are reproduced by QPMP2 and demonstrate the advantages of the approach for larger Hubbard models where the metal-to-insulator transition is qualitatively reproduced, contrasting with the complete failure of traditional methods. We apply this formalism to characteristic strongly correlated molecular systems and show that QPMP2 provides an efficient, size-consistent regularization of MP2. American Chemical Society 2023-06-27 /pmc/articles/PMC10339685/ /pubmed/37367932 http://dx.doi.org/10.1021/acs.jctc.3c00246 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Coveney, Christopher J. N.
Tew, David P.
A Regularized Second-Order Correlation Method from Green’s Function Theory
title A Regularized Second-Order Correlation Method from Green’s Function Theory
title_full A Regularized Second-Order Correlation Method from Green’s Function Theory
title_fullStr A Regularized Second-Order Correlation Method from Green’s Function Theory
title_full_unstemmed A Regularized Second-Order Correlation Method from Green’s Function Theory
title_short A Regularized Second-Order Correlation Method from Green’s Function Theory
title_sort regularized second-order correlation method from green’s function theory
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339685/
https://www.ncbi.nlm.nih.gov/pubmed/37367932
http://dx.doi.org/10.1021/acs.jctc.3c00246
work_keys_str_mv AT coveneychristopherjn aregularizedsecondordercorrelationmethodfromgreensfunctiontheory
AT tewdavidp aregularizedsecondordercorrelationmethodfromgreensfunctiontheory
AT coveneychristopherjn regularizedsecondordercorrelationmethodfromgreensfunctiontheory
AT tewdavidp regularizedsecondordercorrelationmethodfromgreensfunctiontheory