Cargando…
Sociodemographic Disparities in Mercury Exposure from United States Coal-Fired Power Plants
[Image: see text] Hazardous air pollutants emitted by United States (U.S) coal-fired power plants have been controlled by the Mercury and Air Toxics Standards (MATS) since 2012. Sociodemographic disparities in traditional air pollutant exposures from U.S. power plants are known to occur but have not...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339720/ https://www.ncbi.nlm.nih.gov/pubmed/37455865 http://dx.doi.org/10.1021/acs.estlett.3c00216 |
Sumario: | [Image: see text] Hazardous air pollutants emitted by United States (U.S) coal-fired power plants have been controlled by the Mercury and Air Toxics Standards (MATS) since 2012. Sociodemographic disparities in traditional air pollutant exposures from U.S. power plants are known to occur but have not been evaluated for mercury (Hg), a neurotoxicant that bioaccumulates in food webs. Atmospheric Hg deposition from domestic power plants decreased by 91% across the contiguous U.S. from 6.4 Mg in 2010 to 0.55 Mg in 2020. Prior to MATS, populations living within 5 km of power plants (n = 507) included greater proportions of frequent fish consumers, individuals with low annual income and less than a high school education, and limited English-proficiency households compared to the US general population. These results reinforce a lack of distributional justice in plant siting found in prior work. Significantly greater proportions of low-income individuals lived within 5 km of active facilities in 2020 (n = 277) compared to plants that retired after 2010, suggesting that socioeconomic status may have played a role in retirement. Despite large deposition declines, an end-member scenario for remaining exposures from the largest active power plants for individuals consuming self-caught fish suggests they could still exceed the U.S. Environmental Protection Agency reference dose for methylmercury. |
---|