Cargando…
Estimating Indoor Pollutant Loss Using Mass Balances and Unsupervised Clustering to Recognize Decays
[Image: see text] Low-cost air quality monitors are increasingly being deployed in various indoor environments. However, data of high temporal resolution from those sensors are often summarized into a single mean value, with information about pollutant dynamics discarded. Further, low-cost sensors o...
Autores principales: | Du, Bowen, Siegel, Jeffrey A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339722/ https://www.ncbi.nlm.nih.gov/pubmed/37378593 http://dx.doi.org/10.1021/acs.est.3c00756 |
Ejemplares similares
-
An Auto-Recognizing System for Dice Games Using a Modified Unsupervised Grey Clustering Algorithm
por: Huang, Kuo-Yi
Publicado: (2008) -
Stability estimation for unsupervised clustering: A review
por: Liu, Tianmou, et al.
Publicado: (2022) -
Unsupervised Learning-Based WSN Clustering for Efficient Environmental Pollution Monitoring
por: Tadros, Catherine Nayer, et al.
Publicado: (2023) -
Unsupervised Indoor Positioning System Based on Environmental Signatures
por: Feng, Pan, et al.
Publicado: (2019) -
An Unsupervised Learning Technique to Optimize Radio Maps for Indoor Localization
por: Trogh, Jens, et al.
Publicado: (2019)