Cargando…
Probabilistic graphical modelling using Bayesian networks for predicting clinical outcome after posterior decompression in patients with degenerative cervical myelopathy
BACKGROUND: Probabilistic graphical modelling (PGM) can be used to predict risk at the individual patient level and show multiple outcomes and exposures in a single model. OBJECTIVE: To develop PGM for the prediction of clinical outcome in patients with degenerative cervical myelopathy (DCM) after p...
Autores principales: | Shin, Dong Ah, Lee, Sun-Ho, Oh, Sohee, Yoo, Changwon, Yang, Hee-Jin, Jeon, Ikchan, Park, Sung Bae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339766/ https://www.ncbi.nlm.nih.gov/pubmed/37435966 http://dx.doi.org/10.1080/07853890.2023.2232999 |
Ejemplares similares
-
Are surgical outcomes for one level anterior decompression and fusion associated with MRI parameters for degenerative cervical myelopathy?
por: Qu, Luqiang, et al.
Publicado: (2022) -
The Pathophysiology of Degenerative Cervical Myelopathy and the Physiology of Recovery Following Decompression
por: Akter, Farhana, et al.
Publicado: (2020) -
Classification of expert-level therapeutic decisions for degenerative cervical myelopathy using ensemble machine learning algorithms
por: Park, Dougho, et al.
Publicado: (2022) -
Corrigendum: The Pathophysiology of Degenerative Cervical Myelopathy and the Physiology of Recovery Following Decompression
por: Akter, Farhana, et al.
Publicado: (2020) -
Clinical outcomes of epidural and intradural decompression for treatment of degenerative cervical myelopathy
por: Jiao, Genlong, et al.
Publicado: (2020)