Cargando…
Longitudinal flux balance analyses of a patient with episodic colonic inflammation reveals microbiome metabolic dynamics
We report the first use of constraint-based microbial community modeling on a single individual with episodic inflammation of the gastrointestinal tract, who has a well documented set of colonic inflammatory biomarkers, as well as metagenomically-sequenced fecal time series covering seven dates over...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339767/ https://www.ncbi.nlm.nih.gov/pubmed/37438876 http://dx.doi.org/10.1080/19490976.2023.2226921 |
_version_ | 1785071919205187584 |
---|---|
author | Basile, Arianna Heinken, Almut Hertel, Johannes Smarr, Larry Li, Weizhong Treu, Laura Valle, Giorgio Campanaro, Stefano Thiele, Ines |
author_facet | Basile, Arianna Heinken, Almut Hertel, Johannes Smarr, Larry Li, Weizhong Treu, Laura Valle, Giorgio Campanaro, Stefano Thiele, Ines |
author_sort | Basile, Arianna |
collection | PubMed |
description | We report the first use of constraint-based microbial community modeling on a single individual with episodic inflammation of the gastrointestinal tract, who has a well documented set of colonic inflammatory biomarkers, as well as metagenomically-sequenced fecal time series covering seven dates over 16 months. Between the first two time steps the individual was treated with both steroids and antibiotics. Our methodology enabled us to identify numerous time-correlated microbial species and metabolites. We found that the individual’s dynamical microbial ecology in the disease state led to time-varying in silico overproduction, compared to healthy controls, of more than 24 biologically important metabolites, including methane, thiamine, formaldehyde, trimethylamine N-oxide, folic acid, serotonin, histamine, and tryptamine. The microbe-metabolite contribution analysis revealed that some Dialister species changed metabolic pathways according to the inflammation phases. At the first time point, characterized by the highest levels of serum (complex reactive protein) and fecal (calprotectin) inflammation biomarkers, they produced L-serine or formate. The production of the compounds, through a cascade effect, was mediated by the interaction with pathogenic Escherichia coli strains and Desulfovibrio piger. We integrated the microbial community metabolic models of each time point with a male whole-body, organ-resolved model of human metabolism to track the metabolic consequences of dysbiosis at different body sites. The presence of D. piger in the gut microbiome influenced the sulfur metabolism with a domino effect affecting the liver. These results revealed large longitudinal variations in an individual’s gut microbiome ecology and metabolite production, potentially impacting other organs in the body. Future simulations with more time points from an individual could permit us to assess how external drivers, such as diet change or medical interventions, drive microbial community dynamics. |
format | Online Article Text |
id | pubmed-10339767 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-103397672023-07-14 Longitudinal flux balance analyses of a patient with episodic colonic inflammation reveals microbiome metabolic dynamics Basile, Arianna Heinken, Almut Hertel, Johannes Smarr, Larry Li, Weizhong Treu, Laura Valle, Giorgio Campanaro, Stefano Thiele, Ines Gut Microbes Research Paper We report the first use of constraint-based microbial community modeling on a single individual with episodic inflammation of the gastrointestinal tract, who has a well documented set of colonic inflammatory biomarkers, as well as metagenomically-sequenced fecal time series covering seven dates over 16 months. Between the first two time steps the individual was treated with both steroids and antibiotics. Our methodology enabled us to identify numerous time-correlated microbial species and metabolites. We found that the individual’s dynamical microbial ecology in the disease state led to time-varying in silico overproduction, compared to healthy controls, of more than 24 biologically important metabolites, including methane, thiamine, formaldehyde, trimethylamine N-oxide, folic acid, serotonin, histamine, and tryptamine. The microbe-metabolite contribution analysis revealed that some Dialister species changed metabolic pathways according to the inflammation phases. At the first time point, characterized by the highest levels of serum (complex reactive protein) and fecal (calprotectin) inflammation biomarkers, they produced L-serine or formate. The production of the compounds, through a cascade effect, was mediated by the interaction with pathogenic Escherichia coli strains and Desulfovibrio piger. We integrated the microbial community metabolic models of each time point with a male whole-body, organ-resolved model of human metabolism to track the metabolic consequences of dysbiosis at different body sites. The presence of D. piger in the gut microbiome influenced the sulfur metabolism with a domino effect affecting the liver. These results revealed large longitudinal variations in an individual’s gut microbiome ecology and metabolite production, potentially impacting other organs in the body. Future simulations with more time points from an individual could permit us to assess how external drivers, such as diet change or medical interventions, drive microbial community dynamics. Taylor & Francis 2023-07-12 /pmc/articles/PMC10339767/ /pubmed/37438876 http://dx.doi.org/10.1080/19490976.2023.2226921 Text en © 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
spellingShingle | Research Paper Basile, Arianna Heinken, Almut Hertel, Johannes Smarr, Larry Li, Weizhong Treu, Laura Valle, Giorgio Campanaro, Stefano Thiele, Ines Longitudinal flux balance analyses of a patient with episodic colonic inflammation reveals microbiome metabolic dynamics |
title | Longitudinal flux balance analyses of a patient with episodic colonic inflammation reveals microbiome metabolic dynamics |
title_full | Longitudinal flux balance analyses of a patient with episodic colonic inflammation reveals microbiome metabolic dynamics |
title_fullStr | Longitudinal flux balance analyses of a patient with episodic colonic inflammation reveals microbiome metabolic dynamics |
title_full_unstemmed | Longitudinal flux balance analyses of a patient with episodic colonic inflammation reveals microbiome metabolic dynamics |
title_short | Longitudinal flux balance analyses of a patient with episodic colonic inflammation reveals microbiome metabolic dynamics |
title_sort | longitudinal flux balance analyses of a patient with episodic colonic inflammation reveals microbiome metabolic dynamics |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339767/ https://www.ncbi.nlm.nih.gov/pubmed/37438876 http://dx.doi.org/10.1080/19490976.2023.2226921 |
work_keys_str_mv | AT basilearianna longitudinalfluxbalanceanalysesofapatientwithepisodiccolonicinflammationrevealsmicrobiomemetabolicdynamics AT heinkenalmut longitudinalfluxbalanceanalysesofapatientwithepisodiccolonicinflammationrevealsmicrobiomemetabolicdynamics AT herteljohannes longitudinalfluxbalanceanalysesofapatientwithepisodiccolonicinflammationrevealsmicrobiomemetabolicdynamics AT smarrlarry longitudinalfluxbalanceanalysesofapatientwithepisodiccolonicinflammationrevealsmicrobiomemetabolicdynamics AT liweizhong longitudinalfluxbalanceanalysesofapatientwithepisodiccolonicinflammationrevealsmicrobiomemetabolicdynamics AT treulaura longitudinalfluxbalanceanalysesofapatientwithepisodiccolonicinflammationrevealsmicrobiomemetabolicdynamics AT vallegiorgio longitudinalfluxbalanceanalysesofapatientwithepisodiccolonicinflammationrevealsmicrobiomemetabolicdynamics AT campanarostefano longitudinalfluxbalanceanalysesofapatientwithepisodiccolonicinflammationrevealsmicrobiomemetabolicdynamics AT thieleines longitudinalfluxbalanceanalysesofapatientwithepisodiccolonicinflammationrevealsmicrobiomemetabolicdynamics |