Cargando…
A comparison of survey method efficiencies for estimating densities of zebra mussels (Dreissena polymorpha)
Abundance surveys are commonly used to estimate plant or animal densities and frequently require estimating detection probabilities to account for imperfect detection. The estimation of detection probabilities requires additional measurements that take time, potentially reducing the efficiency of th...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10340101/ https://www.ncbi.nlm.nih.gov/pubmed/37456873 http://dx.doi.org/10.7717/peerj.15528 |
Sumario: | Abundance surveys are commonly used to estimate plant or animal densities and frequently require estimating detection probabilities to account for imperfect detection. The estimation of detection probabilities requires additional measurements that take time, potentially reducing the efficiency of the survey when applied to high-density populations. We conducted quadrat, removal, and distance surveys of zebra mussels (Dreissena polymorpha) in three central Minnesota lakes and determined how much survey effort would be required to achieve a pre-specified level of precision for each abundance estimator, allowing us to directly compare survey design efficiencies across a range of conditions. We found that the required sampling effort needed to achieve our precision goal depended on both the survey design and population density. At low densities, survey designs that could cover large areas but with lower detection probabilities, such as distance surveys, were more efficient (i.e., required less sampling effort to achieve the same level of precision). However, at high densities, quadrat surveys, which tend to cover less area but with high detection rates, were more efficient. These results demonstrate that the best survey design is likely to be context-specific, requiring some prior knowledge of the underlying population density and the cost/time needed to collect additional information for estimating detection probabilities. |
---|