Cargando…

Optimization of a tri-drug treatment against lung cancer using orthogonal design in preclinical studies

A growing body of evidence suggests that anesthetics impact the outcome of patients with cancer after surgical intervention. However, the optimal dose and underlying mechanisms of co-administered anesthetics in lung tumor therapy have been poorly studied. Here, we aimed to investigate the role of co...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Jing, Wang, Lijun, Song, Xuming, Zhang, Yijian, Song, Zhenghuan, Duan, Manlin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10340110/
https://www.ncbi.nlm.nih.gov/pubmed/37456863
http://dx.doi.org/10.7717/peerj.15672
Descripción
Sumario:A growing body of evidence suggests that anesthetics impact the outcome of patients with cancer after surgical intervention. However, the optimal dose and underlying mechanisms of co-administered anesthetics in lung tumor therapy have been poorly studied. Here, we aimed to investigate the role of combined anesthetics propofol, sufentanil, and rocuronium in treating lung cancer using an orthogonal experimental design and to explore the optimal combination of anesthetics. First, we evaluated the effects of the three anesthetics on the proliferation and invasion of A-549 cells using Cell Counting Kit 8 and Transwell migration and invasion assays. Subsequently, we applied the orthogonal experimental design (OED) method to screen the appropriate concentrations of the combined anesthetics with the most effective antitumor activity. We found that all three agents inhibited the proliferation of A-549 cells in a dose- and time-dependent manner when applied individually or in combination, with the highest differences in the magnitude of inhibition occurring 24 h after combined drug exposure. The optimal combination of the three anesthetics that achieved the strongest reduction in cell viability was 1.4 µmol/L propofol, 2 nmol/L sufentanil, and 7.83 µmol/L rocuronium. This optimal 3-drug combination produced a more beneficial result at 24 h than either single drug. Our results provide a theoretical basis for improving the efficacy of lung tumor treatment and optimizing anesthetic strategies.