Cargando…
Feature Importance Analysis of a Deep Learning Model for Predicting Late Bladder Toxicity Occurrence in Uterine Cervical Cancer Patients
SIMPLE SUMMARY: This study developed a prediction model for late bladder toxicity in patients with uterine cervical cancer undergoing radiation therapy. A deep learning (DL) model was trained on data from 281 patients and compared its performance with a multivariable logistic regression model. The D...
Autores principales: | Cheon, Wonjoong, Han, Mira, Jeong, Seonghoon, Oh, Eun Sang, Lee, Sung Uk, Lee, Se Byeong, Shin, Dongho, Lim, Young Kyung, Jeong, Jong Hwi, Kim, Haksoo, Kim, Joo Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10340146/ https://www.ncbi.nlm.nih.gov/pubmed/37444573 http://dx.doi.org/10.3390/cancers15133463 |
Ejemplares similares
-
Interobserver Variability Prediction of Primary Gross Tumor in a Patient with Non-Small Cell Lung Cancer
por: Cheon, Wonjoong, et al.
Publicado: (2022) -
Beam Angle Optimization for Double-Scattering Proton Delivery Technique Using an Eclipse Application Programming Interface and Convolutional Neural Network
por: Cheon, Wonjoong, et al.
Publicado: (2021) -
Deep learning method for prediction of patient-specific dose distribution in breast cancer
por: Ahn, Sang Hee, et al.
Publicado: (2021) -
Facial expression monitoring system for predicting patient’s sudden movement during radiotherapy using deep learning
por: Kim, Kwang Hyeon, et al.
Publicado: (2020) -
Evaluation of the dosimetric effect of scattered protons in clinical practice in passive scattering proton therapy
por: Kim, Chankyu, et al.
Publicado: (2021)