Cargando…
Rapid and Automated Method for Detecting and Quantifying Adulterations in High-Quality Honey Using Vis-NIRs in Combination with Machine Learning
Honey is one of the most adulterated foods, usually through the addition of sweeteners or low-cost honeys. This study presents a method based on visible near infrared spectroscopy (Vis-NIRs), in combination with machine learning (ML) algorithms, for the correct identification and quantification of a...
Autores principales: | Calle, José Luis P., Punta-Sánchez, Irene, González-de-Peredo, Ana Velasco, Ruiz-Rodríguez, Ana, Ferreiro-González, Marta, Palma, Miguel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10340210/ https://www.ncbi.nlm.nih.gov/pubmed/37444229 http://dx.doi.org/10.3390/foods12132491 |
Ejemplares similares
-
Rapid Classification of Petroleum Waxes: A Vis-NIR Spectroscopy and Machine Learning Approach
por: Barea-Sepúlveda, Marta, et al.
Publicado: (2023) -
Rapid Detection and Quantification of Adulterants in Fruit Juices Using Machine Learning Tools and Spectroscopy Data
por: Calle, José Luis P., et al.
Publicado: (2022) -
Detection and Classification of Saffron Adulterants by Vis-Nir Imaging, Chemical Analysis, and Soft Computing
por: Alighaleh, Pejman, et al.
Publicado: (2023) -
A Screening Method Based on Headspace-Ion Mobility Spectrometry to Identify Adulterated Honey
por: Aliaño-González, María José, et al.
Publicado: (2019) -
Rapid and Low-Cost Quantification of Adulteration Content in Camellia Oil Utilizing UV-Vis-NIR Spectroscopy Combined with Feature Selection Methods
por: Liu, Qiang, et al.
Publicado: (2023)