Cargando…
The Use of Respiratory Effort Improves an ECG-Based Deep Learning Algorithm to Assess Sleep-Disordered Breathing
Background: Sleep apnea is a prevalent sleep-disordered breathing (SDB) condition that affects a large population worldwide. Research has demonstrated the potential of using electrocardiographic (ECG) signals (heart rate and ECG-derived respiration, EDR) to detect SDB. However, EDR may be a suboptim...
Autores principales: | Xie, Jiali, Fonseca, Pedro, van Dijk, Johannes P., Long, Xi, Overeem, Sebastiaan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10340311/ https://www.ncbi.nlm.nih.gov/pubmed/37443540 http://dx.doi.org/10.3390/diagnostics13132146 |
Ejemplares similares
-
Direct application of an ECG-based sleep staging algorithm on reflective photoplethysmography data decreases performance
por: van Gilst, M. M., et al.
Publicado: (2020) -
Wearable monitoring of sleep-disordered breathing: estimation of the apnea–hypopnea index using wrist-worn reflective photoplethysmography
por: Papini, Gabriele B., et al.
Publicado: (2020) -
Autonomic arousal detection and cardio-respiratory sleep staging improve the accuracy of home sleep apnea tests
por: Ross, Marco, et al.
Publicado: (2023) -
Assessment of respiratory effort with EMG extracted from ECG recordings during prolonged breath holds: Insights into obstructive apnea and extreme physiology
por: Stewart, Mark, et al.
Publicado: (2021) -
Estimation of the apnea-hypopnea index in a heterogeneous sleep-disordered population using optimised cardiovascular features
por: Papini, Gabriele B., et al.
Publicado: (2019)