Cargando…
Multimodal Spatiotemporal Deep Learning Framework to Predict Response of Breast Cancer to Neoadjuvant Systemic Therapy
Current approaches to breast cancer therapy include neoadjuvant systemic therapy (NST). The efficacy of NST is measured by pathologic complete response (pCR). A patient who attains pCR has significantly enhanced disease-free survival progress. The accurate prediction of pCR in response to a given tr...
Autores principales: | Verma, Monu, Abdelrahman, Leila, Collado-Mesa, Fernando, Abdel-Mottaleb, Mohamed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10340375/ https://www.ncbi.nlm.nih.gov/pubmed/37443648 http://dx.doi.org/10.3390/diagnostics13132251 |
Ejemplares similares
-
Multimodal deep learning models for the prediction of pathologic response to neoadjuvant chemotherapy in breast cancer
por: Joo, Sunghoon, et al.
Publicado: (2021) -
Towards a better understanding of annotation tools for medical imaging: a survey
por: Aljabri, Manar, et al.
Publicado: (2022) -
BIDL: a brain-inspired deep learning framework for spatiotemporal processing
por: Wu, Zhenzhi, et al.
Publicado: (2023) -
DPSP: a multimodal deep learning framework for polypharmacy side effects prediction
por: Masumshah, Raziyeh, et al.
Publicado: (2023) -
MildInt: Deep Learning-Based Multimodal Longitudinal Data Integration Framework
por: Lee, Garam, et al.
Publicado: (2019)