Cargando…
Investigating Beta-Variational Convolutional Autoencoders for the Unsupervised Classification of Chest Pneumonia
The world’s population is increasing and so is the challenge on existing healthcare infrastructure to cope with the growing demand in medical diagnosis and evaluation. Although human experts are primarily tasked with the diagnosis of different medical conditions, artificial intelligence (AI)-assiste...
Autores principales: | Akila, Serag Mohamed, Imanov, Elbrus, Almezhghwi, Khaled |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10340446/ https://www.ncbi.nlm.nih.gov/pubmed/37443592 http://dx.doi.org/10.3390/diagnostics13132199 |
Ejemplares similares
-
Convolutional neural networks for the classification of chest X-rays in the IoT era
por: Almezhghwi, Khaled, et al.
Publicado: (2021) -
Unsupervised feature learning for electrocardiogram data using the convolutional variational autoencoder
por: Jang, Jong-Hwan, et al.
Publicado: (2021) -
Unsupervised clustering of SARS-CoV-2 using deep convolutional autoencoder
por: Sherif, Fayroz F., et al.
Publicado: (2022) -
Improved Classification of White Blood Cells with the Generative Adversarial Network and Deep Convolutional Neural Network
por: Almezhghwi, Khaled, et al.
Publicado: (2020) -
Unsupervised Deep Learning based Variational Autoencoder Model for COVID-19 Diagnosis and Classification
por: Mansour, Romany F., et al.
Publicado: (2021)