Cargando…

MET Receptor Tyrosine Kinase Inhibition Reduces Interferon-Gamma (IFN-γ)-Stimulated PD-L1 Expression through the STAT3 Pathway in Melanoma Cells

SIMPLE SUMMARY: While the treatment of melanoma was revolutionized about a decade ago by the introduction of immunotherapies and targeted therapies, advanced melanoma remains a therapeutic challenge. Here we demonstrate a cross-talk between a checkpoint protein, PD-L1, and a receptor tyrosine kinase...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Kyu Young, Han, Yong Hwan, Roehrich, Heidi, Brown, Mary E., Torres-Cabala, Carlos, Giubellino, Alessio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10340457/
https://www.ncbi.nlm.nih.gov/pubmed/37444518
http://dx.doi.org/10.3390/cancers15133408
Descripción
Sumario:SIMPLE SUMMARY: While the treatment of melanoma was revolutionized about a decade ago by the introduction of immunotherapies and targeted therapies, advanced melanoma remains a therapeutic challenge. Here we demonstrate a cross-talk between a checkpoint protein, PD-L1, and a receptor tyrosine kinase (RTK), MET. These findings open the possibility of combining selective inhibitors of these proteins to achieve synergistic efficacy in the treatment of melanoma. ABSTRACT: Melanoma is the leading cause of death from cutaneous malignancy. While targeted therapy and immunotherapy with checkpoint inhibitors have significantly decreased the mortality rate of this disease, advanced melanoma remains a therapeutic challenge. Here, we confirmed that interferon-gamma (IFN-γ)-induced PD-L1 expression in melanoma cell lines. This increased expression was down-regulated by the reduction in phosphorylated STAT3 signaling via MET tyrosine kinase inhibitor treatment. Furthermore, immunoprecipitation and confocal immunofluorescence microscopy analysis reveals MET and PD-L1 protein–protein interaction and colocalization on the cell surface membrane of melanoma cells. Together, these findings demonstrate that the IFN-γ-induced PD-L1 expression in melanoma cells is negatively regulated by MET inhibition through the JAK/STAT3 signaling pathway and establish the colocalization and interaction between an RTK and a checkpoint protein in melanoma cells.