Cargando…
An Apparent Diffusion Coefficient-Based Machine Learning Model Can Improve Prostate Cancer Detection in the Grey Area of the Prostate Imaging Reporting and Data System Category 3: A Single-Centre Experience
SIMPLE SUMMARY: Multiparametric Magnetic Resonance Imaging (mpMRI) interpretation and reporting is based on the more recent version 2.1 of the Prostate Imaging-Reporting and Data System (PI-RADS), revised in 2019, indicating the probability of clinically significant Prostate Cancer (csPCa) on a 5-po...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10340607/ https://www.ncbi.nlm.nih.gov/pubmed/37444548 http://dx.doi.org/10.3390/cancers15133438 |
_version_ | 1785072119684530176 |
---|---|
author | Gaudiano, Caterina Mottola, Margherita Bianchi, Lorenzo Corcioni, Beniamino Braccischi, Lorenzo Tomassoni, Makoto Taninokuchi Cattabriga, Arrigo Cocozza, Maria Adriana Giunchi, Francesca Schiavina, Riccardo Fanti, Stefano Fiorentino, Michelangelo Brunocilla, Eugenio Mosconi, Cristina Bevilacqua, Alessandro |
author_facet | Gaudiano, Caterina Mottola, Margherita Bianchi, Lorenzo Corcioni, Beniamino Braccischi, Lorenzo Tomassoni, Makoto Taninokuchi Cattabriga, Arrigo Cocozza, Maria Adriana Giunchi, Francesca Schiavina, Riccardo Fanti, Stefano Fiorentino, Michelangelo Brunocilla, Eugenio Mosconi, Cristina Bevilacqua, Alessandro |
author_sort | Gaudiano, Caterina |
collection | PubMed |
description | SIMPLE SUMMARY: Multiparametric Magnetic Resonance Imaging (mpMRI) interpretation and reporting is based on the more recent version 2.1 of the Prostate Imaging-Reporting and Data System (PI-RADS), revised in 2019, indicating the probability of clinically significant Prostate Cancer (csPCa) on a 5-point scale, which should be confirmed through trans-rectal ultrasound (TRUS) fusion-targeted biopsy. Among PI-RADS categories, PI-RADS 3 lesions represent a highly “equivocal” result, with a non-negligible probability of PCa, or even csPCa. This study exploits machine learning methods in order to investigate the role of mpMRI as a stand-alone tool for early and non-invasive detection of PCa in a selected cohort of PI-RADS 3 lesions, by means of a radiomic analysis of Apparent Diffusion Coefficient sequences. Differently from what reported in the current literature, the methodology adopted has bounded the possibility of overoptimistic predictive performance, also improving the state-of-art by achieving a positive predictive value of 80%, with specificity = 76% and sensitivity = 78%. ABSTRACT: The Prostate Imaging and Reporting Data System (PI-RADS) has a key role in the management of prostate cancer (PCa). However, the clinical interpretation of PI-RADS 3 score lesions may be challenging and misleading, thus postponing PCa diagnosis to biopsy outcome. Multiparametric magnetic resonance imaging (mpMRI) radiomic analysis may represent a stand-alone noninvasive tool for PCa diagnosis. Hence, this study aims at developing a mpMRI-based radiomic PCa diagnostic model in a cohort of PI-RADS 3 lesions. We enrolled 133 patients with 155 PI-RADS 3 lesions, 84 of which had PCa confirmation by fusion biopsy. Local radiomic features were generated from apparent diffusion coefficient maps, and the four most informative were selected using LASSO, the Wilcoxon rank-sum test (p < 0.001), and support vector machines (SVMs). The selected features where augmented and used to train an SVM classifier, externally validated on a holdout subset. Linear and second-order polynomial kernels were exploited, and their predictive performance compared through receiver operating characteristics (ROC)-related metrics. On the test set, the highest performance, equally for both kernels, was specificity = 76%, sensitivity = 78%, positive predictive value = 80%, and negative predictive value = 74%. Our findings substantially improve radiologist interpretation of PI-RADS 3 lesions and let us advance towards an image-driven PCa diagnosis. |
format | Online Article Text |
id | pubmed-10340607 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103406072023-07-14 An Apparent Diffusion Coefficient-Based Machine Learning Model Can Improve Prostate Cancer Detection in the Grey Area of the Prostate Imaging Reporting and Data System Category 3: A Single-Centre Experience Gaudiano, Caterina Mottola, Margherita Bianchi, Lorenzo Corcioni, Beniamino Braccischi, Lorenzo Tomassoni, Makoto Taninokuchi Cattabriga, Arrigo Cocozza, Maria Adriana Giunchi, Francesca Schiavina, Riccardo Fanti, Stefano Fiorentino, Michelangelo Brunocilla, Eugenio Mosconi, Cristina Bevilacqua, Alessandro Cancers (Basel) Article SIMPLE SUMMARY: Multiparametric Magnetic Resonance Imaging (mpMRI) interpretation and reporting is based on the more recent version 2.1 of the Prostate Imaging-Reporting and Data System (PI-RADS), revised in 2019, indicating the probability of clinically significant Prostate Cancer (csPCa) on a 5-point scale, which should be confirmed through trans-rectal ultrasound (TRUS) fusion-targeted biopsy. Among PI-RADS categories, PI-RADS 3 lesions represent a highly “equivocal” result, with a non-negligible probability of PCa, or even csPCa. This study exploits machine learning methods in order to investigate the role of mpMRI as a stand-alone tool for early and non-invasive detection of PCa in a selected cohort of PI-RADS 3 lesions, by means of a radiomic analysis of Apparent Diffusion Coefficient sequences. Differently from what reported in the current literature, the methodology adopted has bounded the possibility of overoptimistic predictive performance, also improving the state-of-art by achieving a positive predictive value of 80%, with specificity = 76% and sensitivity = 78%. ABSTRACT: The Prostate Imaging and Reporting Data System (PI-RADS) has a key role in the management of prostate cancer (PCa). However, the clinical interpretation of PI-RADS 3 score lesions may be challenging and misleading, thus postponing PCa diagnosis to biopsy outcome. Multiparametric magnetic resonance imaging (mpMRI) radiomic analysis may represent a stand-alone noninvasive tool for PCa diagnosis. Hence, this study aims at developing a mpMRI-based radiomic PCa diagnostic model in a cohort of PI-RADS 3 lesions. We enrolled 133 patients with 155 PI-RADS 3 lesions, 84 of which had PCa confirmation by fusion biopsy. Local radiomic features were generated from apparent diffusion coefficient maps, and the four most informative were selected using LASSO, the Wilcoxon rank-sum test (p < 0.001), and support vector machines (SVMs). The selected features where augmented and used to train an SVM classifier, externally validated on a holdout subset. Linear and second-order polynomial kernels were exploited, and their predictive performance compared through receiver operating characteristics (ROC)-related metrics. On the test set, the highest performance, equally for both kernels, was specificity = 76%, sensitivity = 78%, positive predictive value = 80%, and negative predictive value = 74%. Our findings substantially improve radiologist interpretation of PI-RADS 3 lesions and let us advance towards an image-driven PCa diagnosis. MDPI 2023-06-30 /pmc/articles/PMC10340607/ /pubmed/37444548 http://dx.doi.org/10.3390/cancers15133438 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gaudiano, Caterina Mottola, Margherita Bianchi, Lorenzo Corcioni, Beniamino Braccischi, Lorenzo Tomassoni, Makoto Taninokuchi Cattabriga, Arrigo Cocozza, Maria Adriana Giunchi, Francesca Schiavina, Riccardo Fanti, Stefano Fiorentino, Michelangelo Brunocilla, Eugenio Mosconi, Cristina Bevilacqua, Alessandro An Apparent Diffusion Coefficient-Based Machine Learning Model Can Improve Prostate Cancer Detection in the Grey Area of the Prostate Imaging Reporting and Data System Category 3: A Single-Centre Experience |
title | An Apparent Diffusion Coefficient-Based Machine Learning Model Can Improve Prostate Cancer Detection in the Grey Area of the Prostate Imaging Reporting and Data System Category 3: A Single-Centre Experience |
title_full | An Apparent Diffusion Coefficient-Based Machine Learning Model Can Improve Prostate Cancer Detection in the Grey Area of the Prostate Imaging Reporting and Data System Category 3: A Single-Centre Experience |
title_fullStr | An Apparent Diffusion Coefficient-Based Machine Learning Model Can Improve Prostate Cancer Detection in the Grey Area of the Prostate Imaging Reporting and Data System Category 3: A Single-Centre Experience |
title_full_unstemmed | An Apparent Diffusion Coefficient-Based Machine Learning Model Can Improve Prostate Cancer Detection in the Grey Area of the Prostate Imaging Reporting and Data System Category 3: A Single-Centre Experience |
title_short | An Apparent Diffusion Coefficient-Based Machine Learning Model Can Improve Prostate Cancer Detection in the Grey Area of the Prostate Imaging Reporting and Data System Category 3: A Single-Centre Experience |
title_sort | apparent diffusion coefficient-based machine learning model can improve prostate cancer detection in the grey area of the prostate imaging reporting and data system category 3: a single-centre experience |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10340607/ https://www.ncbi.nlm.nih.gov/pubmed/37444548 http://dx.doi.org/10.3390/cancers15133438 |
work_keys_str_mv | AT gaudianocaterina anapparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT mottolamargherita anapparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT bianchilorenzo anapparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT corcionibeniamino anapparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT braccischilorenzo anapparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT tomassonimakototaninokuchi anapparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT cattabrigaarrigo anapparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT cocozzamariaadriana anapparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT giunchifrancesca anapparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT schiavinariccardo anapparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT fantistefano anapparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT fiorentinomichelangelo anapparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT brunocillaeugenio anapparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT mosconicristina anapparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT bevilacquaalessandro anapparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT gaudianocaterina apparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT mottolamargherita apparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT bianchilorenzo apparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT corcionibeniamino apparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT braccischilorenzo apparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT tomassonimakototaninokuchi apparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT cattabrigaarrigo apparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT cocozzamariaadriana apparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT giunchifrancesca apparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT schiavinariccardo apparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT fantistefano apparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT fiorentinomichelangelo apparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT brunocillaeugenio apparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT mosconicristina apparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience AT bevilacquaalessandro apparentdiffusioncoefficientbasedmachinelearningmodelcanimproveprostatecancerdetectioninthegreyareaoftheprostateimagingreportinganddatasystemcategory3asinglecentreexperience |