Cargando…
Predicting Mechanical Thrombectomy Outcome and Time Limit through ADC Value Analysis: A Comprehensive Clinical and Simulation Study Using Machine Learning
Predicting outcomes after mechanical thrombectomy (MT) remains challenging for patients with acute ischemic stroke (AIS). This study aimed to explore the usefulness of machine learning (ML) methods using detailed apparent diffusion coefficient (ADC) analysis to predict patient outcomes and simulate...
Autores principales: | Oura, Daisuke, Takamiya, Soichiro, Ihara, Riku, Niiya, Yoshimasa, Sugimori, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10340725/ https://www.ncbi.nlm.nih.gov/pubmed/37443532 http://dx.doi.org/10.3390/diagnostics13132138 |
Ejemplares similares
-
The Prediction of Neurological Prognosis for Cervical Spondylotic Myelopathy Using Diffusion Tensor Imaging
por: Takamiya, Soichiro, et al.
Publicado: (2023) -
Decreased Value of Highly Accurate Fractional Anisotropy Using 3-Tesla ZOOM Diffusion Tensor Imaging After Decompressive Surgery in Patients with Cervical Spondylotic Myelopathy: Aligned Fibers Effect
por: Iwasaki, Motoyuki, et al.
Publicado: (2019) -
Classification of brain lesions using a machine learning approach with cross-sectional ADC value dynamics
por: Solar, Peter, et al.
Publicado: (2023) -
Endometrial Cancer Staging: Is There Value in ADC?
por: Moreira, Ana Sofia Linhares, et al.
Publicado: (2023) -
Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability
por: Lambregts, Doenja M. J., et al.
Publicado: (2011)