Cargando…

Diagnostic Value of Serum Creatinine and Cystatin-C-Based Indices and Ishii Score in Cancer-Related Sarcopenia

Background: Sarcopenia is a key factor affecting the prognosis of cancer patients; however, identifying patients at risk remains challenging. The serum creatinine/cystatin C ratio (CCR) and the sarcopenia index (SI) are new biomarkers for sarcopenia screening. The Ishii test score is an equation bas...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Liming, Wang, Xingyu, Mao, Tiantao, Li, Jibin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10340775/
https://www.ncbi.nlm.nih.gov/pubmed/37443572
http://dx.doi.org/10.3390/diagnostics13132179
Descripción
Sumario:Background: Sarcopenia is a key factor affecting the prognosis of cancer patients; however, identifying patients at risk remains challenging. The serum creatinine/cystatin C ratio (CCR) and the sarcopenia index (SI) are new biomarkers for sarcopenia screening. The Ishii test score is an equation based on age, grip strength, and calf circumference for sarcopenia screening. However, their performances in advanced cancer patients have not been thoroughly studied. We aimed to evaluate and compare the accuracy of three screening tools in diagnosing cancer-related sarcopenia. Methods: A total of 215 cancer patients with a median age of 60.5 y were enrolled in this cross-sectional study. The Asian Working Group for Sarcopenia 2019 (AWGS2019) criteria were used as a standard. The diagnostic accuracies of the CCR, SI, and Ishii screening test were analyzed in terms of sensitivity, specificity, negative and positive predictive values, the Youden index, and the receiver operating characteristic (ROC) curve. Results: According to the AWGS2019 criteria, the prevalence of sarcopenia and severe sarcopenia was 47.9% and 18.6%, respectively. The CCR, SI (positively), and Ishii scores (negatively) were correlated with muscle mass. Accordingly, sarcopenia was negatively correlated with CCR and SI, while it was significantly positively correlated with the Ishii score. In males, the AUCs of the CCR, SI, and Ishii scores were 0.743 (95%CI 0.65–0.836), 0.758 (95%CI 0.665–0.852), and 0.833 (95%CI 0.751–0.909), respectively. In females, the AUCs of the CCR, SI, and Ishii scores were 0.714 (95%CI 0.61–0.818), 0.737 (95%CI 0.635–0.839), and 0.849 (95%CI 0.775–0.932), respectively. The AUC of the Ishii score was significantly higher than that of the other screening tools (p < 0.001). The cut-off value of the optimal Ishii score was 102.3 (sensitivity: 93.2%, specificity: 59.1%) for males and 98.3 (sensitivity: 93.3%, specificity: 64.7%) for females. Conclusions: The CCR and SI based on serum CysC and creatinine had a remarkably similar overall diagnostic accuracy for sarcopenia in advanced cancer. Among the above three sarcopenia screening tools, the Ishii score chart seemed to have better predictive values of sarcopenia in cancer patients.