Cargando…
YOLOv5-FPN: A Robust Framework for Multi-Sized Cell Counting in Fluorescence Images
Cell counting in fluorescence microscopy is an essential task in biomedical research for analyzing cellular dynamics and studying disease progression. Traditional methods for cell counting involve manual counting or threshold-based segmentation, which are time-consuming and prone to human error. Rec...
Autores principales: | Aldughayfiq, Bader, Ashfaq, Farzeen, Jhanjhi, N. Z., Humayun, Mamoona |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341068/ https://www.ncbi.nlm.nih.gov/pubmed/37443674 http://dx.doi.org/10.3390/diagnostics13132280 |
Ejemplares similares
-
A Deep Learning Approach for Atrial Fibrillation Classification Using Multi-Feature Time Series Data from ECG and PPG
por: Aldughayfiq, Bader, et al.
Publicado: (2023) -
YOLO-Based Deep Learning Model for Pressure Ulcer Detection and Classification
por: Aldughayfiq, Bader, et al.
Publicado: (2023) -
Explainable AI for Retinoblastoma Diagnosis: Interpreting Deep Learning Models with LIME and SHAP
por: Aldughayfiq, Bader, et al.
Publicado: (2023) -
Capturing Semantic Relationships in Electronic Health Records Using Knowledge Graphs: An Implementation Using MIMIC III Dataset and GraphDB
por: Aldughayfiq, Bader, et al.
Publicado: (2023) -
A New Target Detection Method of Ferrography Wear Particle Images Based on ECAM-YOLOv5-BiFPN Network
por: He, Lei, et al.
Publicado: (2023)