Cargando…
Performance Analysis of Segmentation and Classification of CT-Scanned Ovarian Tumours Using U-Net and Deep Convolutional Neural Networks
Difficulty in detecting tumours in early stages is the major cause of mortalities in patients, despite the advancements in treatment and research regarding ovarian cancer. Deep learning algorithms were applied to serve the purpose as a diagnostic tool and applied to CT scan images of the ovarian reg...
Autores principales: | Kodipalli, Ashwini, Fernandes, Steven L., Gururaj, Vaishnavi, Varada Rameshbabu, Shriya, Dasar, Santosh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341135/ https://www.ncbi.nlm.nih.gov/pubmed/37443676 http://dx.doi.org/10.3390/diagnostics13132282 |
Ejemplares similares
-
DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
por: Yuan, Wenwen, et al.
Publicado: (2022) -
Hyper-Dense_Lung_Seg: Multimodal-Fusion-Based Modified U-Net for Lung Tumour Segmentation Using Multimodality of CT-PET Scans
por: Alshmrani, Goram Mufarah, et al.
Publicado: (2023) -
Brain tumour segmentation based on an improved U-Net
por: Zheng, Ping, et al.
Publicado: (2022) -
Accurate segmentation for different types of lung nodules on CT images using improved U-Net convolutional network
por: Zhang, Xiaofang, et al.
Publicado: (2021) -
Correction: DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
por: Yuan, Wenwen, et al.
Publicado: (2022)