Cargando…
Comparison of MRI Sequences to Predict ATRX Status Using Radiomics-Based Machine Learning
ATRX is an important molecular marker according to the 2021 WHO classification of adult-type diffuse glioma. We aim to predict the ATRX mutation status non-invasively using radiomics-based machine learning models on MRI and to determine which MRI sequence is best suited for this purpose. In this ret...
Autores principales: | Nacul Mora, Nabila Gala, Akkurt, Burak Han, Kasap, Dilek, Blömer, David, Heindel, Walter, Mannil, Manoj, Musigmann, Manfred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341337/ https://www.ncbi.nlm.nih.gov/pubmed/37443610 http://dx.doi.org/10.3390/diagnostics13132216 |
Ejemplares similares
-
Use Test of Automated Machine Learning in Cancer Diagnostics
por: Musigmann, Manfred, et al.
Publicado: (2023) -
Assessing preoperative risk of STR in skull meningiomas using MR radiomics and machine learning
por: Musigmann, Manfred, et al.
Publicado: (2022) -
Pseudoprogression prediction in high grade primary CNS tumors by use of radiomics
por: Ari, Asena Petek, et al.
Publicado: (2022) -
Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agent
por: Mammadov, Orkhan, et al.
Publicado: (2022) -
Testing the applicability and performance of Auto ML for potential applications in diagnostic neuroradiology
por: Musigmann, Manfred, et al.
Publicado: (2022)