Cargando…
A Putative Zn(II)(2)Cys(6)-Type Transcription Factor FpUme18 Is Required for Development, Conidiation, Cell Wall Integrity, Endocytosis and Full Virulence in Fusarium pseudograminearum
Fusarium pseudograminearum is one of the major fungal pathogens that cause Fusarium crown rot (FCR) worldwide and can lead to a substantially reduced grain yield and quality. Transcription factors play an important role in regulating growth and pathogenicity in plant pathogens. In this study, we ide...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341630/ https://www.ncbi.nlm.nih.gov/pubmed/37446163 http://dx.doi.org/10.3390/ijms241310987 |
Sumario: | Fusarium pseudograminearum is one of the major fungal pathogens that cause Fusarium crown rot (FCR) worldwide and can lead to a substantially reduced grain yield and quality. Transcription factors play an important role in regulating growth and pathogenicity in plant pathogens. In this study, we identified a putative Zn(II)(2)Cys(6) fungal-type domain-containing transcription factor and named it FpUme18. The expression of FpUME18 was induced during the infection of wheat by F. pseudograminearum. The ΔFpume18 deletion mutant showed defects in growth, conidial production, and conidial germination. In the responses to the cell wall, salt and oxidative stresses, the ΔFpume18 mutant inhibited the rate of mycelial growth at a higher rate compared with the wild type. The staining of conidia and mycelia with lipophilic dye FM4-64 revealed a delay in endocytosis when FpUME18 was deleted. FpUME18 also positively regulated the expression of phospholipid-related synthesis genes. The deletion of FpUME18 attenuated the pathogenicity of wheat coleoptiles. FpUME18 also participated in the production of the DON toxin by regulating the expression of TRI genes. Collectively, FpUme18 is required for vegetative growth, conidiation, stress response, endocytosis, and full virulence in F. pseudograminearum. |
---|