Cargando…
Using the Random Forest for Identifying Key Physicochemical Properties of Amino Acids to Discriminate Anticancer and Non-Anticancer Peptides
Anticancer peptides (ACPs) represent a promising new therapeutic approach in cancer treatment. They can target cancer cells without affecting healthy tissues or altering normal physiological functions. Machine learning algorithms have increasingly been utilized for predicting peptide sequences with...
Autores principales: | Deng, Yiting, Ma, Shuhan, Li, Jiayu, Zheng, Bowen, Lv, Zhibin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341712/ https://www.ncbi.nlm.nih.gov/pubmed/37446031 http://dx.doi.org/10.3390/ijms241310854 |
Ejemplares similares
-
Identification of subtypes of anticancer peptides based on sequential features and physicochemical properties
por: Huang, Kai-Yao, et al.
Publicado: (2021) -
The Physicochemical Properties of Graphene Nanocomposites Influence the Anticancer Effect
por: Yang, Wenbo, et al.
Publicado: (2019) -
Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review)
por: Chiangjong, Wararat, et al.
Publicado: (2020) -
Pleiotropic Anticancer Properties of Scorpion Venom Peptides: Rhopalurus princeps Venom as an Anticancer Agent
por: Mikaelian, Arthur G, et al.
Publicado: (2020) -
Anticancer Properties of Peptide Fragments of Hair Proteins
por: Markowicz, Sergiusz, et al.
Publicado: (2014)