Cargando…
Effect of Silicon on Micronutrient Content in New Potato Tubers
Since silicon can improve nutrient uptake in plants, the effect of foliar silicon (sodium metasilicate) application on micronutrient content in early crop potato tuber was investigated. Silicon was applied at dosages of 23.25 g Si∙ha(–1) or 46.50 g Si∙ha(–1) (0.25 L∙ha(–1) or 0.50 L∙ha(–1) of Optysi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341835/ https://www.ncbi.nlm.nih.gov/pubmed/37445755 http://dx.doi.org/10.3390/ijms241310578 |
Sumario: | Since silicon can improve nutrient uptake in plants, the effect of foliar silicon (sodium metasilicate) application on micronutrient content in early crop potato tuber was investigated. Silicon was applied at dosages of 23.25 g Si∙ha(–1) or 46.50 g Si∙ha(–1) (0.25 L∙ha(–1) or 0.50 L∙ha(–1) of Optysil) once at the leaf development stage (BBCH 14–16), or at the tuber initiation stage (BBCH 40–1), and twice, at the leaf development and tuber initiation stages. Potatoes were harvested 75 days after planting (the end of June). Foliar-applied silicon reduced the Fe concentration and increased Cu and Mn concentrations in early crop potato tubers under water deficit conditions but did not affect the Zn, B, or Si concentrations. The dosage and time of silicon application slightly affected the Fe and Cu concentration in the tubers. Under drought conditions, the highest Mn content in the tuber was observed when 46.50 g Si∙ha(–1) was applied at the leaf development stage, whereas under periodic water deficits, it was highest with the application of the same silicon dosage at the tuber initiation stage (BBCH 40–41). The Si content in tubers was negatively correlated with the Fe and B content, and positively correlated with the Cu and Mn content. |
---|