Cargando…
Microstructural Characterization and Prior Particle Boundary (PPB) of PM Nickel-Based Superalloys by Spark Plasma Sintering (SPS)
This research investigates the microstructure and defects of powder metallurgy (PM) nickel-based superalloys prepared by spark plasma sintering (SPS). The densification, microstructural evolution, and precipitate phase evolution processes of FGH96 superalloy after powder heat treatment (PHT) and sin...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342308/ https://www.ncbi.nlm.nih.gov/pubmed/37444975 http://dx.doi.org/10.3390/ma16134664 |
_version_ | 1785072468066566144 |
---|---|
author | Qin, Zijun Li, Qianyi Wang, Guowei Liu, Feng |
author_facet | Qin, Zijun Li, Qianyi Wang, Guowei Liu, Feng |
author_sort | Qin, Zijun |
collection | PubMed |
description | This research investigates the microstructure and defects of powder metallurgy (PM) nickel-based superalloys prepared by spark plasma sintering (SPS). The densification, microstructural evolution, and precipitate phase evolution processes of FGH96 superalloy after powder heat treatment (PHT) and sintering via SPS are specifically analyzed. Experimental results demonstrate that SPS technology, when applied to sinter at the sub-solidus temperature of the γ’ phase, effectively mitigates the formation of a prior particle boundary (PPB). Based on experimental and computational findings, it has been determined that the presence of elemental segregation and Al(2)O(3) oxides on the surface of pre-alloyed powders leads to the preferential precipitation of MC-type carbides and Al(2)O(3) and ZrO(2) oxides in the sintering necks during the hot consolidation process, resulting in the formation of PPB. This study contributes to the understanding of microstructural modifications achieved through SPS technology, providing crucial information for optimizing sintering conditions and reducing the widespread occurrence of PPB, ultimately enhancing the material performance of PM nickel-based superalloys. |
format | Online Article Text |
id | pubmed-10342308 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103423082023-07-14 Microstructural Characterization and Prior Particle Boundary (PPB) of PM Nickel-Based Superalloys by Spark Plasma Sintering (SPS) Qin, Zijun Li, Qianyi Wang, Guowei Liu, Feng Materials (Basel) Article This research investigates the microstructure and defects of powder metallurgy (PM) nickel-based superalloys prepared by spark plasma sintering (SPS). The densification, microstructural evolution, and precipitate phase evolution processes of FGH96 superalloy after powder heat treatment (PHT) and sintering via SPS are specifically analyzed. Experimental results demonstrate that SPS technology, when applied to sinter at the sub-solidus temperature of the γ’ phase, effectively mitigates the formation of a prior particle boundary (PPB). Based on experimental and computational findings, it has been determined that the presence of elemental segregation and Al(2)O(3) oxides on the surface of pre-alloyed powders leads to the preferential precipitation of MC-type carbides and Al(2)O(3) and ZrO(2) oxides in the sintering necks during the hot consolidation process, resulting in the formation of PPB. This study contributes to the understanding of microstructural modifications achieved through SPS technology, providing crucial information for optimizing sintering conditions and reducing the widespread occurrence of PPB, ultimately enhancing the material performance of PM nickel-based superalloys. MDPI 2023-06-28 /pmc/articles/PMC10342308/ /pubmed/37444975 http://dx.doi.org/10.3390/ma16134664 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Qin, Zijun Li, Qianyi Wang, Guowei Liu, Feng Microstructural Characterization and Prior Particle Boundary (PPB) of PM Nickel-Based Superalloys by Spark Plasma Sintering (SPS) |
title | Microstructural Characterization and Prior Particle Boundary (PPB) of PM Nickel-Based Superalloys by Spark Plasma Sintering (SPS) |
title_full | Microstructural Characterization and Prior Particle Boundary (PPB) of PM Nickel-Based Superalloys by Spark Plasma Sintering (SPS) |
title_fullStr | Microstructural Characterization and Prior Particle Boundary (PPB) of PM Nickel-Based Superalloys by Spark Plasma Sintering (SPS) |
title_full_unstemmed | Microstructural Characterization and Prior Particle Boundary (PPB) of PM Nickel-Based Superalloys by Spark Plasma Sintering (SPS) |
title_short | Microstructural Characterization and Prior Particle Boundary (PPB) of PM Nickel-Based Superalloys by Spark Plasma Sintering (SPS) |
title_sort | microstructural characterization and prior particle boundary (ppb) of pm nickel-based superalloys by spark plasma sintering (sps) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342308/ https://www.ncbi.nlm.nih.gov/pubmed/37444975 http://dx.doi.org/10.3390/ma16134664 |
work_keys_str_mv | AT qinzijun microstructuralcharacterizationandpriorparticleboundaryppbofpmnickelbasedsuperalloysbysparkplasmasinteringsps AT liqianyi microstructuralcharacterizationandpriorparticleboundaryppbofpmnickelbasedsuperalloysbysparkplasmasinteringsps AT wangguowei microstructuralcharacterizationandpriorparticleboundaryppbofpmnickelbasedsuperalloysbysparkplasmasinteringsps AT liufeng microstructuralcharacterizationandpriorparticleboundaryppbofpmnickelbasedsuperalloysbysparkplasmasinteringsps |