Cargando…

Bio-Approach for Obtaining Enantiomerically Pure Clopidogrel with the Use of Ionic Liquids

Clopidogrel is a chiral compound widely used as an antiplatelet medication that lowers the risk of blood clots, strokes, and heart attacks. The main aim of the study presented herein was to obtain (S)-clopidogrel, which is commercially available in treatments, via the kinetic resolution of racemic c...

Descripción completa

Detalles Bibliográficos
Autores principales: Chałupka, Joanna, Sikora, Adam, Ziegler-Borowska, Marta, Marszałł, Michał Piotr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342315/
https://www.ncbi.nlm.nih.gov/pubmed/37446300
http://dx.doi.org/10.3390/ijms241311124
Descripción
Sumario:Clopidogrel is a chiral compound widely used as an antiplatelet medication that lowers the risk of blood clots, strokes, and heart attacks. The main aim of the study presented herein was to obtain (S)-clopidogrel, which is commercially available in treatments, via the kinetic resolution of racemic clopidogrel carboxylic acid with the use of lipase from Candida rugosa and a two-phase reaction medium containing an ionic liquid. For this purpose, the enantioselective biotransformation of clopidogrel carboxylic acid and chiral chromatographic separation with the use of a UPLC-MS/MS system were optimized. The best kinetic resolution parameters were obtained by using a catalytic system containing lipase from Candida rugosa OF as a biocatalyst, cyclohexane and [EMIM][BF4] as a two-phase reaction medium, and methanol as an acyl acceptor. The enantiomeric excess of the product was ee(p) = 94.21% ± 1.07 and the conversion was c = 49.60% ± 0.57%, whereas the enantioselectivity was E = 113.40 ± 1.29. The performed study proved the possibility of obtaining (S)-clopidogrel with the use of lipase as a biocatalyst and a two-phase reaction medium containing an ionic liquid, which is in parallel with green chemistry methodology and does not require environmentally harmful conditions.