Cargando…
Permeability Prediction of Nanoscale Porous Materials Using Discrete Cosine Transform-Based Artificial Neural Networks
The permeability of porous materials determines the fluid flow rate and aids in the prediction of their mechanical properties. This study developed a novel approach that combines the discrete cosine transform (DCT) and artificial neural networks (ANN) for permeability analysis and prediction in digi...
Autores principales: | Li, Dongshuang, You, Shaohua, Liao, Qinzhuo, Lei, Gang, Liu, Xu, Chen, Weiqing, Li, Huijian, Liu, Bo, Guo, Xiaoxi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342421/ https://www.ncbi.nlm.nih.gov/pubmed/37444982 http://dx.doi.org/10.3390/ma16134668 |
Ejemplares similares
-
Perceptual image coding with discrete cosine transform
por: Tan, Ee-Leng, et al.
Publicado: (2015) -
Discrete cosine transform: algorithms, advantages, applications
por: Rao, K R, et al.
Publicado: (1990) -
Discrete Cosine Transform for the Analysis of Essential Tremor
por: Solé-Casals, Jordi, et al.
Publicado: (2019) -
Compressed Wideband Spectrum Sensing Based on Discrete Cosine Transform
por: Wang, Yulin, et al.
Publicado: (2014) -
Study on new creep equation using discrete cosine transform for high temperature materials
por: Hiraguchi, Hideo
Publicado: (2019)