Cargando…
Analysis of Raffinose Synthase Gene Family in Bread Wheat and Identification of Drought Resistance and Salt Tolerance Function of TaRS15-3B
Raffinose synthase (RS) plays a crucial role in plant growth and development, as well as in responses to biotic stresses and abiotic stresses, yet few studies have been conducted on its role in bread wheat. Therefore, in this study we screened and identified a family of bread wheat raffinose synthas...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342549/ https://www.ncbi.nlm.nih.gov/pubmed/37446364 http://dx.doi.org/10.3390/ijms241311185 |
Sumario: | Raffinose synthase (RS) plays a crucial role in plant growth and development, as well as in responses to biotic stresses and abiotic stresses, yet few studies have been conducted on its role in bread wheat. Therefore, in this study we screened and identified a family of bread wheat raffinose synthase genes based on bread wheat genome information and analyzed their physicochemical properties, phylogenetic evolutionary relationships, conserved structural domains, promoter cis-acting elements, and expression patterns. The BSMV-induced silencing of TaRS15-3B resulted in the bread wheat seedlings being susceptible to drought and salt stress and reduced the expression levels of stress-related and ROS-scavenging genes in bread wheat plants. This further affected the ability of bread wheat to cope with drought and salt stress. In conclusion, this study revealed that the RS gene family in bread wheat plays an important role in plant response to abiotic stresses and that the TaRS15-3B gene can improve the tolerance of transgenic bread wheat to drought and salt stresses, provide directions for the study of other RS gene families in bread wheat, and supply candidate genes for use in molecular breeding of bread wheat for stress resistance. |
---|