Cargando…
Medial Reduction in Sesamoid Position after Hallux Valgus Correction Surgery Showed Better Outcome in S.E.R.I. Osteotomy than DCMO
Background: The purpose of the present study was to compare the degree of sesamoid reduction after hallux valgus correction between distal chevron metatarsal osteotomy (DCMO) and S.E.R.I. (simple, effective, rapid, and inexpensive) osteotomy, and to analyze the effects on the recurrence of hallux va...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342565/ https://www.ncbi.nlm.nih.gov/pubmed/37445453 http://dx.doi.org/10.3390/jcm12134402 |
Sumario: | Background: The purpose of the present study was to compare the degree of sesamoid reduction after hallux valgus correction between distal chevron metatarsal osteotomy (DCMO) and S.E.R.I. (simple, effective, rapid, and inexpensive) osteotomy, and to analyze the effects on the recurrence of hallux valgus. Methods: We retrospectively analyzed the foot radiographs of 60 feet (30 DCMO and 30 SERI) treated for hallux valgus from August 2013 to July 2017. Radiographic assessments were performed preoperatively, at early follow-up (at a mean of 3.1 months) and at the most recent follow-up (at a mean of 16.7 months). The location of the medial sesamoid was classified into seven stages, in accordance with the method described by Hardy and Clapham; stage IV or less was defined as the normal position for the medial sesamoid, and stage V or greater was defined as lateral displacement of the sesamoid. The pre- and post-operative hallux valgus angle, 1–2 intermetatarsal angle, and sesamoid position were compared between the two groups. Results: The mean follow-up period was 18.4 (12–36) months in the DCMO group and 15.0 (12–36) months in the S.E.R.I. group (p = 0.108). The radiologic results showed that the hallux valgus angles were not significantly different between the two groups preoperatively and at the early follow-up: preoperatively, they were 28.8 ± 7.7 in the DCMO group and 32.6 ± 9.5 in the S.E.R.I. group (p = 0.101), and they were 10.4 ± 4.0 and 8.7 ± 5.0 (p = 0.148) at the early follow-up, respectively. However, at the most recent follow-up, the DCMO group (13.9 ± 5.6) showed significantly higher hallux valgus angles than the S.E.R.I. group (10.4 ± 6.4, p = 0.030), and there were no differences between the recurrence of hallux valgus in the DCMO group (13%)and that in the S.E.R.I. group (10%) (p = 0.553). There were no significant differences in the 1–2 intermetatarsal angles between the two groups at the early follow-up (6.1 ± 2.5 vs. 4.8 ± 3.1, p = 0.082) and at the most recent follow-up (7.3 ± 2.9 vs. 6.6 ± 3.5, p = 0.408). After hallux-valgus-correction surgery, the stage change of the tibia sesamoid position from the preoperative stage to the initial follow-up was significantly larger in the S.E.R.I. group (−4.4 ± 1.4) than in the DCMO group (−3.4 ± 1.1) (p = 0.003); the changes from the preoperative stage to the last follow-up were also significantly larger in the SERI group (−3.3 ± 1.7) than in the DCMO group (−2.4 ± 1.5) (p = 0.028); however, the changes from the initial follow-up to the last follow-up showed no significant differences between the two groups (+1.0 ± 1.1 in the DCMO group vs. +1.1 ± 1.2 in the S.E.R.I. group) (p = 0.822). The medial sesamoid was laterally subluxated in all the preoperative cases in the DCMO and S.E.R.I. groups. The lateral subluxation of the tibia sesamoid was more frequently observed in the DCMO group (four cases, 13%) than in the S.E.R.I. group (0 cases, 0%) (p = 0.038) at the early follow-up. Conclusion: In conclusion, our results demonstrated that the S.E.R.I. procedure is superior to DCMO in decreasing the hallux valgus angle and showed that the early post-operative reduction in the sesamoids can be a risk factor for the recurrence of hallux valgus. |
---|