Cargando…
Predicting Intraoperative Hypothermia Burden during Non-Cardiac Surgery: A Retrospective Study Comparing Regression to Six Machine Learning Algorithms
Background: Inadvertent intraoperative hypothermia is a common complication that affects patient comfort and morbidity. As the development of hypothermia is a complex phenomenon, predicting it using machine learning (ML) algorithms may be superior to logistic regression. Methods: We performed a sing...
Autores principales: | Dibiasi, Christoph, Agibetov, Asan, Kapral, Lorenz, Zeiner, Sebastian, Kimberger, Oliver |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342641/ https://www.ncbi.nlm.nih.gov/pubmed/37445469 http://dx.doi.org/10.3390/jcm12134434 |
Ejemplares similares
-
Development of a Reinforcement Learning Algorithm to Optimize Corticosteroid Therapy in Critically Ill Patients with Sepsis
por: Bologheanu, Razvan, et al.
Publicado: (2023) -
Development and internal validation of an algorithm to predict intraoperative risk of inadvertent hypothermia based on preoperative data
por: Wallisch, C., et al.
Publicado: (2021) -
Machine learning-derived electrocardiographic algorithm for the detection of cardiac amyloidosis
por: Schrutka, Lore, et al.
Publicado: (2022) -
The effect of ephedrine on intraoperative hypothermia
por: Jo, Youn Yi, et al.
Publicado: (2011) -
External validation of the ProVent score for prognostication of 1-year mortality of critically ill patients with prolonged mechanical ventilation: a single-centre, retrospective observational study in Austria
por: Dibiasi, Christoph, et al.
Publicado: (2022)