Cargando…
Machine-Learning-Based Tool to Predict Target Prostate Biopsy Outcomes: An Internal Validation Study
The aim of this study is to present a personalized predictive model (PPM) with a machine learning (ML) system that is able to identify and classify patients with suspected prostate cancer (PCa) following mpMRI. We extracted all the patients who underwent fusion biopsy (FB) from March 2014 to Decembe...
Autores principales: | Checcucci, Enrico, Rosati, Samanta, De Cillis, Sabrina, Giordano, Noemi, Volpi, Gabriele, Granato, Stefano, Zamengo, Davide, Verri, Paolo, Amparore, Daniele, De Luca, Stefano, Manfredi, Matteo, Fiori, Cristian, Di Dio, Michele, Balestra, Gabriella, Porpiglia, Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342762/ https://www.ncbi.nlm.nih.gov/pubmed/37445393 http://dx.doi.org/10.3390/jcm12134358 |
Ejemplares similares
-
Artificial intelligence for target prostate biopsy outcomes prediction the potential application of fuzzy logic
por: Checcucci, Enrico, et al.
Publicado: (2021) -
Implementing telemedicine for the management of benign urologic conditions: a single centre experience in Italy
por: Checcucci, Enrico, et al.
Publicado: (2021) -
iTIND for BPH: Technique and procedural outcomes: A narrative review of current literature
por: Fiori, Cristian, et al.
Publicado: (2021) -
Health Information Technology Usability Evaluation Scale (Health-ITUES) and User-Experience Questionnaire (UEQ) for 3D Intraoperative Cognitive Navigation (ICON3D(TM)) System for Urological Procedures
por: Checcucci, Enrico, et al.
Publicado: (2023) -
Three-dimensional imaging reconstruction of the kidney's anatomy for a tailored minimally invasive partial nephrectomy: A pilot study
por: Amparore, Daniele, et al.
Publicado: (2022)