Cargando…
The Constituent Phases and Micromechanical Properties of Steel Corrosion Layers Generated by Hyperbaric-Oxygen Accelerated Corrosion Test
Hyperbaric oxygen-accelerated corrosion testing (HOACT) is a newly developed method to study in the labor the corrosion behavior of steel bars in concrete. This work aimed to intensively investigate the mechanical properties and microstructures of HOACT-generated corrosion products by means of nano-...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342771/ https://www.ncbi.nlm.nih.gov/pubmed/37444836 http://dx.doi.org/10.3390/ma16134521 |
Sumario: | Hyperbaric oxygen-accelerated corrosion testing (HOACT) is a newly developed method to study in the labor the corrosion behavior of steel bars in concrete. This work aimed to intensively investigate the mechanical properties and microstructures of HOACT-generated corrosion products by means of nano-indentation tests, Raman micro-spectrometry, and scanning electron microscopy. The local elastic modulus and nanohardness varied over wide ranges of 6.8–75.2 GPa and 0.38–4.44 GPa, respectively. Goethite, lepidocrocite, maghemite, magnetite, and akageneite phases were identified in the corrosion products. Most regions of the rust layer were composed of a complex and heterogeneous mix of different phases, while some regions were composed of maghemite or akageneite only. The relationship between the micromechanical properties and typical microstructural features is finally discussed at the micro-scale level. It was found that the porosity of corrosion products can significantly influence their micromechanical properties. |
---|