Cargando…

Increasing the Compressive Strength of Helicoidal Laminates after Low-Velocity Impact upon Mixing with 0° Orientation Plies and Its Analysis

The helicoidal laminate is a kind of nature inspired fiber reinforced polymer, and the ply orientation affects their mechanical properties for engineering structural applications. A variety of helicoidal laminates with uniform and non-linear pitch angles mixed with additional 0° plies are fabricated...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Zhefeng, Du, Xin, Liu, Rui, Xie, Qiwu, Zhang, Xiaojing, Zhu, Qiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342965/
https://www.ncbi.nlm.nih.gov/pubmed/37444913
http://dx.doi.org/10.3390/ma16134599
Descripción
Sumario:The helicoidal laminate is a kind of nature inspired fiber reinforced polymer, and the ply orientation affects their mechanical properties for engineering structural applications. A variety of helicoidal laminates with uniform and non-linear pitch angles mixed with additional 0° plies are fabricated to investigate the impact resistance through low-velocity impact and after-impact compression tests. Additionally, helicoidal laminates with constant pitch angles, quasi-isotropic laminate, and cross-ply laminates are also fabricated for a comparative study. The impact characteristics and the compressive strength are analyzed in view of the impact model, shear stress distribution, and fracture toughness. The results suggest that 10° or 20° are the better basic pitch angles before mixing 0° orientation plies. The 0° orientation plies may affect the contact stiffness, bending stiffness, damage extent, and compressive modulus. The compressive strength reaches the highest in tests on two samples with different percentages of 0° orientation plies and ply setups. Bending stiffness also dominates the impact response. The analysis on the laminate parameters provides ideas to improve the residual strength of helicoidal laminate.