Cargando…
The Evolutions of Microstructure, Texture and Hardness of A1050 Deformed by HPT at the Transition Area
High-pressure torsion (HPT) is an effective severe plastic deformation method to produce ultrafine-grained (UFG) and nanocrystalline (NC) materials. In the past, most studies have focused on the evolutions in the microstructure, texture and mechanical properties of HPT-deformed materials at peripher...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342973/ https://www.ncbi.nlm.nih.gov/pubmed/37445000 http://dx.doi.org/10.3390/ma16134686 |
Sumario: | High-pressure torsion (HPT) is an effective severe plastic deformation method to produce ultrafine-grained (UFG) and nanocrystalline (NC) materials. In the past, most studies have focused on the evolutions in the microstructure, texture and mechanical properties of HPT-deformed materials at peripheral regions. The corresponding evolutions at a special area were observed in this study to reveal the potential plastic deformation mechanism for face-centred cubic (FCC) material with high stacking fault energy. A decreasing trend was found in grain size, and the final grain size was less than 1 μm. However, close observation revealed that the general trend could be divided into different sub-stages, in which grain elongation and grain fragmentation were dominant, respectively. Additionally, microhardness demonstrated a non-linear increase with the development of plastic deformation. Finally, the microhardness reached a high level of ~64 HV. At the early stages of HPT, the C component was transformed into a cube component, suggesting the material flows around the shear plane normal (SPN) axis at these stages. However, finally they will be replaced by ideal simple shear orientations. |
---|