Cargando…
Electrochemical Mechanism of Oxidative Dissolution of Silver Nanoparticles in Water: Effect of Size on Electrode Potential and Solubility
For the first time, an electrochemical mechanism of oxidative dissolution of silver nanoparticles in aqueous solutions is suggested and substantiated. The dissolution is caused by the occurrence of two interrelated electrochemical processes: (1) silver oxidation on a microanode and (2) oxygen reduct...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343186/ https://www.ncbi.nlm.nih.gov/pubmed/37446423 http://dx.doi.org/10.3390/nano13131907 |
_version_ | 1785072677621334016 |
---|---|
author | Ershov, Boris Ershov, Vadim |
author_facet | Ershov, Boris Ershov, Vadim |
author_sort | Ershov, Boris |
collection | PubMed |
description | For the first time, an electrochemical mechanism of oxidative dissolution of silver nanoparticles in aqueous solutions is suggested and substantiated. The dissolution is caused by the occurrence of two interrelated electrochemical processes: (1) silver oxidation on a microanode and (2) oxygen reduction on a microcathode. According to the suggested model, the standard electrode potential of a nanoparticle decreases with a decrease in its size, which leads to an increase in the electromotive force of the oxidative dissolution of silver. A proportional dependence of the solubility of nanoparticles on their standard potential is revealed. An empirical equation is derived that relates the solubility of AgNPs to their electrode potential and size. In the course of oxidation, silver nanoparticles undergo aggregation with a gradual increase in the potential to the value characteristic of the bulk metal. This leads to the deceleration and practical cessation of the dissolution. |
format | Online Article Text |
id | pubmed-10343186 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103431862023-07-14 Electrochemical Mechanism of Oxidative Dissolution of Silver Nanoparticles in Water: Effect of Size on Electrode Potential and Solubility Ershov, Boris Ershov, Vadim Nanomaterials (Basel) Article For the first time, an electrochemical mechanism of oxidative dissolution of silver nanoparticles in aqueous solutions is suggested and substantiated. The dissolution is caused by the occurrence of two interrelated electrochemical processes: (1) silver oxidation on a microanode and (2) oxygen reduction on a microcathode. According to the suggested model, the standard electrode potential of a nanoparticle decreases with a decrease in its size, which leads to an increase in the electromotive force of the oxidative dissolution of silver. A proportional dependence of the solubility of nanoparticles on their standard potential is revealed. An empirical equation is derived that relates the solubility of AgNPs to their electrode potential and size. In the course of oxidation, silver nanoparticles undergo aggregation with a gradual increase in the potential to the value characteristic of the bulk metal. This leads to the deceleration and practical cessation of the dissolution. MDPI 2023-06-22 /pmc/articles/PMC10343186/ /pubmed/37446423 http://dx.doi.org/10.3390/nano13131907 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ershov, Boris Ershov, Vadim Electrochemical Mechanism of Oxidative Dissolution of Silver Nanoparticles in Water: Effect of Size on Electrode Potential and Solubility |
title | Electrochemical Mechanism of Oxidative Dissolution of Silver Nanoparticles in Water: Effect of Size on Electrode Potential and Solubility |
title_full | Electrochemical Mechanism of Oxidative Dissolution of Silver Nanoparticles in Water: Effect of Size on Electrode Potential and Solubility |
title_fullStr | Electrochemical Mechanism of Oxidative Dissolution of Silver Nanoparticles in Water: Effect of Size on Electrode Potential and Solubility |
title_full_unstemmed | Electrochemical Mechanism of Oxidative Dissolution of Silver Nanoparticles in Water: Effect of Size on Electrode Potential and Solubility |
title_short | Electrochemical Mechanism of Oxidative Dissolution of Silver Nanoparticles in Water: Effect of Size on Electrode Potential and Solubility |
title_sort | electrochemical mechanism of oxidative dissolution of silver nanoparticles in water: effect of size on electrode potential and solubility |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343186/ https://www.ncbi.nlm.nih.gov/pubmed/37446423 http://dx.doi.org/10.3390/nano13131907 |
work_keys_str_mv | AT ershovboris electrochemicalmechanismofoxidativedissolutionofsilvernanoparticlesinwatereffectofsizeonelectrodepotentialandsolubility AT ershovvadim electrochemicalmechanismofoxidativedissolutionofsilvernanoparticlesinwatereffectofsizeonelectrodepotentialandsolubility |