Cargando…

Experimental Study on the Fracture Toughness of Bamboo Scrimber

In the past decade, bamboo scrimber has developed rapidly in the field of building materials due to its excellent mechanical properties, such as high toughness and high tensile strength. However, when the applied stress exceeds the ultimate strength limit of bamboo scrimber, cracks occur, which affe...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Kairan, Hou, Yubo, Lu, Yubin, Wang, Mingtao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343190/
https://www.ncbi.nlm.nih.gov/pubmed/37445195
http://dx.doi.org/10.3390/ma16134880
Descripción
Sumario:In the past decade, bamboo scrimber has developed rapidly in the field of building materials due to its excellent mechanical properties, such as high toughness and high tensile strength. However, when the applied stress exceeds the ultimate strength limit of bamboo scrimber, cracks occur, which affects the performance of bamboo scrimber in structural applications. Due to the propensity of cracks to propagate, it reduces the load-bearing capacity of the bamboo scrimber material. Therefore, research on the fracture toughness of bamboo scrimber contributes to determining the material’s load-bearing capacity and failure mechanisms, enabling its widespread application in engineering failure analysis. The fracture toughness of bamboo scrimber was studied via the single-edge notched beam (SENB) experiment and compact compression (CC) method. Nine groups of longitudinal and transverse samples were selected for experimental investigation. The fracture toughness of longitudinal bamboo scrimber under tensile and compressive loadings was 3.59 MPa·m(1/2) and 2.39 MPa·m(1/2), respectively. In addition, the fracture toughness of transverse bamboo scrimber under tensile and compressive conditions was 0.38 MPa·m(1/2) and 1.79 MPa·m(1/2), respectively. The results show that, for this material, there was a significant distinction between longitudinal and transverse. Subsequently, three-point bending tests and simulations were studied. The results show that the failure mode and the force–displacement curve of the numerical simulation were highly consistent compared with the experimental results. It could verify the correctness of the test parameters. Finally, the flexural strength of bamboo scrimber was calculated to be as high as 143.16 MPa. This paper provides data accumulation for the numerical simulation of bamboo scrimber, which can further promote the development of bamboo scrimber parameters in all aspects of the application.