Cargando…
Synergies between Fibrillated Nanocellulose and Hot-Pressing of Papers Obtained from High-Yield Pulp
To extend the application of cost-effective high-yield pulps in packaging, strength and barrier properties are improved by advanced-strength additives or by hot-pressing. The aim of this study is to assess the synergic effects between the two approaches by using nanocellulose as a bulk additive, and...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343211/ https://www.ncbi.nlm.nih.gov/pubmed/37446447 http://dx.doi.org/10.3390/nano13131931 |
Sumario: | To extend the application of cost-effective high-yield pulps in packaging, strength and barrier properties are improved by advanced-strength additives or by hot-pressing. The aim of this study is to assess the synergic effects between the two approaches by using nanocellulose as a bulk additive, and by hot-pressing technology. Due to the synergic effect, dry strength increases by 118% while individual improvements are 31% by nanocellulose and 92% by hot-pressing. This effect is higher for mechanical fibrillated cellulose. After hot-pressing, all papers retain more than 22% of their dry strength. Hot-pressing greatly increases the paper’s ability to withstand compressive forces applied in short periods of time by 84%, with a further 30% increase due to the synergic effect of the fibrillated nanocellulose. Hot-pressing and the fibrillated cellulose greatly decrease air permeability (80% and 68%, respectively) for refining pretreated samples, due to the increased fiber flexibility, which increase up to 90% using the combined effect. The tear index increases with the addition of nanocellulose, but this effect is lost after hot-pressing. In general, fibrillation degree has a small effect which means that low- cost nanocellulose could be used in hot-pressed papers, providing products with a good strength and barrier capacity. |
---|