Cargando…

Efficient D-π-π-A-Type Dye Sensitizer Based on a Benzothiadiazole Moiety: A Computational Study

The design of highly efficient sensitizers is one of the most significant areas in dye-sensitized solar cell (DSSC) research. We studied a series of benzothiadiazole-based D-π-π-A organic dyes, putting emphasis on the influence of the donor moiety on the DSSC’s efficiency. Using (linear-response tim...

Descripción completa

Detalles Bibliográficos
Autores principales: Mustafa, Fatma M., Abdel-Latif, Mahmoud K., Abdel-Khalek, Ahmed A., Kühn, Oliver
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343348/
https://www.ncbi.nlm.nih.gov/pubmed/37446847
http://dx.doi.org/10.3390/molecules28135185
Descripción
Sumario:The design of highly efficient sensitizers is one of the most significant areas in dye-sensitized solar cell (DSSC) research. We studied a series of benzothiadiazole-based D-π-π-A organic dyes, putting emphasis on the influence of the donor moiety on the DSSC’s efficiency. Using (linear-response time-dependent) density functional theory ((TD)DFT)) with the CAM-B3LYP functional, different donor groups were characterized in terms of electronic absorption spectra and key photovoltaic parameters. As a reference, a dye was considered that had a benzothiadiazole fragment linked via thiophene rings to a diphenylamine donor and a cyanoacrylic-acid acceptor. The different systems were first studied in terms of individual performance parameters, which eventually aggregated into power conversion efficiency. Only the amino-substituted species showed a modest increase, whereas the dimethylamino case showed a decrease.