Cargando…

Quasiepitaxial Aluminum Film Nanostructure Optimization for Superconducting Quantum Electronic Devices

In this paper, we develop fabrication technology and study aluminum films intended for superconducting quantum nanoelectronics using AFM, SEM, XRD, HRXRR. Two-temperature-step quasiepitaxial growth of Al on (111) Si substrate provides a preferentially (111)-oriented Al polycrystalline film and reduc...

Descripción completa

Detalles Bibliográficos
Autores principales: Tarasov, Mikhail, Lomov, Andrey, Chekushkin, Artem, Fominsky, Mikhail, Zakharov, Denis, Tatarintsev, Andrey, Kraevsky, Sergey, Shadrin, Anton
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343352/
https://www.ncbi.nlm.nih.gov/pubmed/37446518
http://dx.doi.org/10.3390/nano13132002
_version_ 1785072716622069760
author Tarasov, Mikhail
Lomov, Andrey
Chekushkin, Artem
Fominsky, Mikhail
Zakharov, Denis
Tatarintsev, Andrey
Kraevsky, Sergey
Shadrin, Anton
author_facet Tarasov, Mikhail
Lomov, Andrey
Chekushkin, Artem
Fominsky, Mikhail
Zakharov, Denis
Tatarintsev, Andrey
Kraevsky, Sergey
Shadrin, Anton
author_sort Tarasov, Mikhail
collection PubMed
description In this paper, we develop fabrication technology and study aluminum films intended for superconducting quantum nanoelectronics using AFM, SEM, XRD, HRXRR. Two-temperature-step quasiepitaxial growth of Al on (111) Si substrate provides a preferentially (111)-oriented Al polycrystalline film and reduces outgrowth bumps, peak-to-peak roughness from 70 to 10 nm, and texture coefficient from 3.5 to 1.7, while increasing hardness from 5.4 to 16 GPa. Future progress in superconducting current density, stray capacitance, relaxation time, and noise requires a reduction in structural defect density and surface imperfections, which can be achieved by improving film quality using such quasiepitaxial growth techniques.
format Online
Article
Text
id pubmed-10343352
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103433522023-07-14 Quasiepitaxial Aluminum Film Nanostructure Optimization for Superconducting Quantum Electronic Devices Tarasov, Mikhail Lomov, Andrey Chekushkin, Artem Fominsky, Mikhail Zakharov, Denis Tatarintsev, Andrey Kraevsky, Sergey Shadrin, Anton Nanomaterials (Basel) Article In this paper, we develop fabrication technology and study aluminum films intended for superconducting quantum nanoelectronics using AFM, SEM, XRD, HRXRR. Two-temperature-step quasiepitaxial growth of Al on (111) Si substrate provides a preferentially (111)-oriented Al polycrystalline film and reduces outgrowth bumps, peak-to-peak roughness from 70 to 10 nm, and texture coefficient from 3.5 to 1.7, while increasing hardness from 5.4 to 16 GPa. Future progress in superconducting current density, stray capacitance, relaxation time, and noise requires a reduction in structural defect density and surface imperfections, which can be achieved by improving film quality using such quasiepitaxial growth techniques. MDPI 2023-07-04 /pmc/articles/PMC10343352/ /pubmed/37446518 http://dx.doi.org/10.3390/nano13132002 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Tarasov, Mikhail
Lomov, Andrey
Chekushkin, Artem
Fominsky, Mikhail
Zakharov, Denis
Tatarintsev, Andrey
Kraevsky, Sergey
Shadrin, Anton
Quasiepitaxial Aluminum Film Nanostructure Optimization for Superconducting Quantum Electronic Devices
title Quasiepitaxial Aluminum Film Nanostructure Optimization for Superconducting Quantum Electronic Devices
title_full Quasiepitaxial Aluminum Film Nanostructure Optimization for Superconducting Quantum Electronic Devices
title_fullStr Quasiepitaxial Aluminum Film Nanostructure Optimization for Superconducting Quantum Electronic Devices
title_full_unstemmed Quasiepitaxial Aluminum Film Nanostructure Optimization for Superconducting Quantum Electronic Devices
title_short Quasiepitaxial Aluminum Film Nanostructure Optimization for Superconducting Quantum Electronic Devices
title_sort quasiepitaxial aluminum film nanostructure optimization for superconducting quantum electronic devices
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343352/
https://www.ncbi.nlm.nih.gov/pubmed/37446518
http://dx.doi.org/10.3390/nano13132002
work_keys_str_mv AT tarasovmikhail quasiepitaxialaluminumfilmnanostructureoptimizationforsuperconductingquantumelectronicdevices
AT lomovandrey quasiepitaxialaluminumfilmnanostructureoptimizationforsuperconductingquantumelectronicdevices
AT chekushkinartem quasiepitaxialaluminumfilmnanostructureoptimizationforsuperconductingquantumelectronicdevices
AT fominskymikhail quasiepitaxialaluminumfilmnanostructureoptimizationforsuperconductingquantumelectronicdevices
AT zakharovdenis quasiepitaxialaluminumfilmnanostructureoptimizationforsuperconductingquantumelectronicdevices
AT tatarintsevandrey quasiepitaxialaluminumfilmnanostructureoptimizationforsuperconductingquantumelectronicdevices
AT kraevskysergey quasiepitaxialaluminumfilmnanostructureoptimizationforsuperconductingquantumelectronicdevices
AT shadrinanton quasiepitaxialaluminumfilmnanostructureoptimizationforsuperconductingquantumelectronicdevices