Cargando…
Characterization of Antioxidant and Antimicrobial Activity and Phenolic Compound Profile of Extracts from Seeds of Different Vitis Species
Seeds of Vitis vinifera L. with a high content of bioactive compounds are valuable by-products from grape processing. However, little is known about the bioactivity of seeds from other Vitis species. The aim of this study has been to compare the phenolic composition, antimicrobial activity, and anti...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343412/ https://www.ncbi.nlm.nih.gov/pubmed/37446586 http://dx.doi.org/10.3390/molecules28134924 |
Sumario: | Seeds of Vitis vinifera L. with a high content of bioactive compounds are valuable by-products from grape processing. However, little is known about the bioactivity of seeds from other Vitis species. The aim of this study has been to compare the phenolic composition, antimicrobial activity, and antioxidant activity of extracts from seeds of four Vitis species (V. riparia Michx., V. californica Benth., V. amurensis Rupr., and V. vinifera L.). Antioxidant activities were assessed as ferric-reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(•)) scavenging activity, and oxygen radical absorbance capacity (ORAC). The antimicrobial activity was determined using the microdilution method against some Gram-negative (Escherichia coli, Salmonella enterica ser. Typhimurium, and Enterobacter aerogenes) and Gram-positive (Enterococcus faecalis and Staphylococcus aureus) bacteria. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to evaluate the phenolic profile of extracts. Flavan-3-ols, procyanidins, phenolic acids, flavonols, anthocyanins, and stilbenoids were detected. (+)-Catechin and (−)-epicatechin turned out to be the most abundant in the phenolic profile of V. amurensis seed extract. Phenolic acids prevailed in the extract from V. vinifera seeds. The V. riparia and V. californica seed extracts had higher contents of most individual phenolics compared to the other Vitis species. They also showed a higher total phenolic content, DPPH(•) scavenging activity, ORAC, and overall antibacterial activity. Total phenolic content significantly correlated with antioxidant activity and antimicrobial activity against E. coli. The principal component analysis (PCA) showed discrimination between V. vinifera, V. amurensis, and clustered V. riparia and V. californica with respect to variables. To recapitulate, this research demonstrates that seeds of different Vitis species, especially V. riparia and V. californica, are sources of molecules with antioxidant and antimicrobial activities that can be used in different sectors, such as in the food, cosmetic, and pharmaceutical industries. |
---|