Cargando…

Hemostasis Strategies and Recent Advances in Nanomaterials for Hemostasis

The development of materials that effectively stop bleeding and prevent wound adhesion is essential in both military and medical fields. However, traditional hemostasis methods, such as cautery, tourniquets, and gauze, have limitations. In recent years, new nanomaterials have gained popularity in me...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Jian, Wang, Jingzhong, Xu, Tao, Yao, Hai, Yu, Lili, Huang, Da
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343471/
https://www.ncbi.nlm.nih.gov/pubmed/37446923
http://dx.doi.org/10.3390/molecules28135264
Descripción
Sumario:The development of materials that effectively stop bleeding and prevent wound adhesion is essential in both military and medical fields. However, traditional hemostasis methods, such as cautery, tourniquets, and gauze, have limitations. In recent years, new nanomaterials have gained popularity in medical and health fields due to their unique microstructural advantages. Compared to traditional materials, nanomaterials offer better adhesion, versatility, and improved bioavailability of traditional medicines. Nanomaterials also possess advantages such as a high degree and stability, self-degradation, fewer side effects, and improved wound healing, which make them ideal for the development of new hemostatic materials. Our review provides an overview of the currently used hemostatic strategies and materials, followed by a review of the cutting-edge nanomaterials for hemostasis, including nanoparticles and nanocomposite hydrogels. The paper also briefly describes the challenges faced by the application of nanomaterials for hemostasis and the prospects for their future development.