Cargando…
Significant Progress for Hot-Deformed Nd-Fe-B Magnets: A Review
High-performance Nd-Fe-B-based rare-earth permanent magnets play a crucial role in the application of traction motors equipped in new energy automobiles. In particular, the anisotropic hot-deformed (HD) Nd-Fe-B magnets prepared by the hot-press and hot-deformation process show great potential in ach...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343483/ https://www.ncbi.nlm.nih.gov/pubmed/37445103 http://dx.doi.org/10.3390/ma16134789 |
_version_ | 1785072747673550848 |
---|---|
author | Chen, Renjie Xia, Xianshuang Tang, Xu Yan, Aru |
author_facet | Chen, Renjie Xia, Xianshuang Tang, Xu Yan, Aru |
author_sort | Chen, Renjie |
collection | PubMed |
description | High-performance Nd-Fe-B-based rare-earth permanent magnets play a crucial role in the application of traction motors equipped in new energy automobiles. In particular, the anisotropic hot-deformed (HD) Nd-Fe-B magnets prepared by the hot-press and hot-deformation process show great potential in achieving high coercivity due to their fine grain sizes of 200–400 nm, which are smaller by more than an order of magnitude compared to the traditional sintered Nd-Fe-B magnets. However, the current available coercivity of HD magnets is not as high as expected according to an empirical correlation between coercivity and grain size, only occupying about 25% of its full potential of the anisotropy field of the Nd(2)Fe(14)B phase. For the sake of achieving high-coercivity HD magnets, two major routes have been developed, namely the grain boundary diffusion process (GBDP) and the dual alloy diffusion process (DADP). In this review, the fundamentals and development of the HD Nd-Fe-B magnets are comprehensively summarized and discussed based on worldwide scientific research. The advances in the GBDP and DADP are investigated and summarized based on the latest progress and results. Additionally, the mechanisms of coercivity enhancement are discussed based on the numerous results of micromagnetic simulations to understand the structure–property relationships of the HD Nd-Fe-B magnets. Lastly, the magnetization reversal behaviors, based on the observation of magneto-optic Kerr effect microscopy, are analyzed to pinpoint the weak regions in the microstructure of the HD Nd-Fe-B magnets. |
format | Online Article Text |
id | pubmed-10343483 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103434832023-07-14 Significant Progress for Hot-Deformed Nd-Fe-B Magnets: A Review Chen, Renjie Xia, Xianshuang Tang, Xu Yan, Aru Materials (Basel) Review High-performance Nd-Fe-B-based rare-earth permanent magnets play a crucial role in the application of traction motors equipped in new energy automobiles. In particular, the anisotropic hot-deformed (HD) Nd-Fe-B magnets prepared by the hot-press and hot-deformation process show great potential in achieving high coercivity due to their fine grain sizes of 200–400 nm, which are smaller by more than an order of magnitude compared to the traditional sintered Nd-Fe-B magnets. However, the current available coercivity of HD magnets is not as high as expected according to an empirical correlation between coercivity and grain size, only occupying about 25% of its full potential of the anisotropy field of the Nd(2)Fe(14)B phase. For the sake of achieving high-coercivity HD magnets, two major routes have been developed, namely the grain boundary diffusion process (GBDP) and the dual alloy diffusion process (DADP). In this review, the fundamentals and development of the HD Nd-Fe-B magnets are comprehensively summarized and discussed based on worldwide scientific research. The advances in the GBDP and DADP are investigated and summarized based on the latest progress and results. Additionally, the mechanisms of coercivity enhancement are discussed based on the numerous results of micromagnetic simulations to understand the structure–property relationships of the HD Nd-Fe-B magnets. Lastly, the magnetization reversal behaviors, based on the observation of magneto-optic Kerr effect microscopy, are analyzed to pinpoint the weak regions in the microstructure of the HD Nd-Fe-B magnets. MDPI 2023-07-03 /pmc/articles/PMC10343483/ /pubmed/37445103 http://dx.doi.org/10.3390/ma16134789 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Chen, Renjie Xia, Xianshuang Tang, Xu Yan, Aru Significant Progress for Hot-Deformed Nd-Fe-B Magnets: A Review |
title | Significant Progress for Hot-Deformed Nd-Fe-B Magnets: A Review |
title_full | Significant Progress for Hot-Deformed Nd-Fe-B Magnets: A Review |
title_fullStr | Significant Progress for Hot-Deformed Nd-Fe-B Magnets: A Review |
title_full_unstemmed | Significant Progress for Hot-Deformed Nd-Fe-B Magnets: A Review |
title_short | Significant Progress for Hot-Deformed Nd-Fe-B Magnets: A Review |
title_sort | significant progress for hot-deformed nd-fe-b magnets: a review |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343483/ https://www.ncbi.nlm.nih.gov/pubmed/37445103 http://dx.doi.org/10.3390/ma16134789 |
work_keys_str_mv | AT chenrenjie significantprogressforhotdeformedndfebmagnetsareview AT xiaxianshuang significantprogressforhotdeformedndfebmagnetsareview AT tangxu significantprogressforhotdeformedndfebmagnetsareview AT yanaru significantprogressforhotdeformedndfebmagnetsareview |