Cargando…
Enrichment of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes by Conjugated Polymer-Assisted Separation
Semiconducting single-walled carbon nanotubes (s-SWCNTs) with large diameters are highly desired in the construction of high performance optoelectronic devices. However, it is difficult to selectively prepare large-diameter s-SWCNTs since their structure and chemical stability are quite similar with...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343552/ https://www.ncbi.nlm.nih.gov/pubmed/37446517 http://dx.doi.org/10.3390/nano13132001 |
Sumario: | Semiconducting single-walled carbon nanotubes (s-SWCNTs) with large diameters are highly desired in the construction of high performance optoelectronic devices. However, it is difficult to selectively prepare large-diameter s-SWCNTs since their structure and chemical stability are quite similar with their metallic counterparts. In this work, we use SWCNTs with large diameter as a raw material, conjugated polymer of regioregular poly-(3-dodecylthiophene) (rr-P3DDT) with long side chain as a wrapping agent to selectively separate large-diameter s-SWCNTs. It is found that s-SWCNTs with a diameter of ~1.9 nm are effectively enriched, which shows a clean surface. By using the sorted s-SWCNTs as a channel material, we constructed thin-film transistors showing charge-carrier mobilities higher than 10 cm(2) V(−1) s(−1) and on/off ratios higher than 10(3). |
---|