Cargando…

Synergistic Effect of Nano-Silica and Intumescent Flame Retardant on the Fire Reaction Properties of Polypropylene Composites

Silica nanoparticles (nano-silica) were used as synergistic agents with ammonium polyphosphate (APP) and pentaerythritol (PER) to enhance flame retardancy of polypropylene (PP) in this research. The composites were prepared using a melt-mixing method. The influences of nano-silica on the fire perfor...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yongliang, Liu, Baoqiang, Chen, Ruiyang, Wang, Yunfei, Han, Zhidong, Wang, Chunfeng, Weng, Ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343592/
https://www.ncbi.nlm.nih.gov/pubmed/37445072
http://dx.doi.org/10.3390/ma16134759
Descripción
Sumario:Silica nanoparticles (nano-silica) were used as synergistic agents with ammonium polyphosphate (APP) and pentaerythritol (PER) to enhance flame retardancy of polypropylene (PP) in this research. The composites were prepared using a melt-mixing method. The influences of nano-silica on the fire performance of composites were thoroughly discussed, which promotes understanding of nano-silica on the flame-retardant performance of polypropylene composite. Scanning electron microscope (SEM) and energy-dispersive spectrometer (EDS) results indicated that the nano-silica with a diameter of about 95 ± 3.9 nm were dispersed favorably in the composite matrix, which might elevate its synergistic effect with intumescent flame retardant and improve the flame retardancy of polypropylene composite. The synergistic effects between nano-silica and intumescent flame retardant on PP composites were studied using the limiting oxygen index (LOI), UL-94 test, and cone calorimeter test (CCT). The total amount of flame retardant was maintained at 30%. When the dosage of nano-silica was 1 wt.%, the LOI value of PP/IFR/Si1.0 composite reached 27.3% and its UL-94 classification reached V-1. Based on the parameters of the CCT, the introduction of nano-silica induced composites with depressed heat release rate (HRR) and peak heat release rate (PHRR). The PHRR of PP/IFR/Si0.5 was only 295.8 kW/m(2), which was 17% lower than that of PP/IFR. Moreover, the time to PHRR of PP/IFR/Si0.5 was delayed to 396 s, which was about 36 s later than that without nano-silica. EDS was used to quantitatively analyze the distribution of silica in charred residue. The EDS results indicated that the silica tended to accumulate on the surface during the fire. The surface accumulation characteristic of silica endows it with the enhanced flame-retardant properties of polypropylene composite at a very small dosage (as low as 1 wt.%).