Cargando…
Phase-Controlled Cobalt Catalyst Boosting Hydrogenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran
The search for non-noble metal catalysts for chemical transformations is of paramount importance. In this study, an efficient non-noble metal catalyst for hydrogenation, hexagonal close-packed cobalt (HCP-Co), was synthesized through a simple one-step reduction of β-Co(OH)(2) nanosheets via a temper...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343655/ https://www.ncbi.nlm.nih.gov/pubmed/37446581 http://dx.doi.org/10.3390/molecules28134918 |
Sumario: | The search for non-noble metal catalysts for chemical transformations is of paramount importance. In this study, an efficient non-noble metal catalyst for hydrogenation, hexagonal close-packed cobalt (HCP-Co), was synthesized through a simple one-step reduction of β-Co(OH)(2) nanosheets via a temperature-induced phase transition. The obtained HCP-Co exhibited several-times-higher catalytic efficiency than its face-centered cubic cobalt (FCC-Co) counterpart in the hydrogenation of the C=C/C=O group, especially for the 5-hydroxymethylfurfural (HMF) hydrogenation (8.5-fold enhancement). Density functional theory calculations demonstrated that HMF molecules were adsorbed more firmly on the (11 [Formula: see text] 0) facet of HCP-Co than that on the (111) facet of FCC-Co, favoring the activation of the C=O group in the HMF molecule. The stronger adsorption on the (11 [Formula: see text] 0) facet of HCP-Co also led to lower activation energy than that on the (111) facet of FCC-Co, thereby resulting in high activity and selectivity. Moreover, HCP-Co exhibited outstanding catalytic stability during the hydrogenation of HMF. These results highlight the possibility of fabricating hydrogenation catalysts with satisfactory catalytic properties by precisely tuning their active crystal phase. |
---|