Cargando…
Adsorption Performance of Magnetic Covalent Organic Framework Composites for Bisphenol A and Ibuprofen
As typical environmental endocrine disruptors and nonsteroidal anti-inflammatory drugs, bisphenol A and ibuprofen in water supplies can cause great harm to the ecological environment and human health. In this study, magnetic covalent organic framework composites Fe(3)O(4)@COF-300 were synthesized by...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343673/ https://www.ncbi.nlm.nih.gov/pubmed/37446876 http://dx.doi.org/10.3390/molecules28135214 |
Sumario: | As typical environmental endocrine disruptors and nonsteroidal anti-inflammatory drugs, bisphenol A and ibuprofen in water supplies can cause great harm to the ecological environment and human health. In this study, magnetic covalent organic framework composites Fe(3)O(4)@COF-300 were synthesized by the hydrothermal method and used to remove bisphenol A and ibuprofen from water. Fe(3)O(4)@COF-300 could be rapidly separated from the matrix by external magnetic fields, and could selectively adsorb bisphenol A and ibuprofen in the presence of coexisting compounds such as phenol, Congo red, and amino black 10B. The removal efficiency of ibuprofen was 96.12–98.52% at pH in the range of 2–4 and that of bisphenol A was 92.18–95.62% at pH in the range of 2–10. The adsorption of bisphenol A and ibuprofen followed a pseudo-second-order kinetic and Langmuir model, and was a spontaneous endothermic process with the maximum adsorption amounts of 173.31 and 303.03 mg∙g(−1), respectively. The material presented favorable stability and reusability, and the removal efficiency of bisphenol A and ibuprofen after 5 cycles was still over 92.15% and 89.29%, respectively. Therefore, the prepared composite Fe(3)O(4)@COF-300 exhibited good performance in the adsorption of bisphenol A and ibuprofen in water. |
---|