Cargando…
Zinc Oxide Quantum Dots May Provide a Novel Potential Treatment for Antibiotic-Resistant Streptococcus agalactiae in Lama glama
Streptococcus agalactiae is a significant pathogen that can affect both human beings and animals. The extensive current use of antibiotics has resulted in antibiotic resistance. In our previous research, we found that zinc oxide quantum dots (ZnO QDs) had inhibitory effects on antibiotic-resistant m...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343708/ https://www.ncbi.nlm.nih.gov/pubmed/37446776 http://dx.doi.org/10.3390/molecules28135115 |
_version_ | 1785072801216987136 |
---|---|
author | Zhou, Ziyao Zhang, Ting Chen, Yixin Zhou, Xiaoxiao Zhong, Yalin Liu, Haifeng Zhong, Zhijun Hu, Yanchun Liao, Fei Wang, Xianxiang Peng, Guangneng |
author_facet | Zhou, Ziyao Zhang, Ting Chen, Yixin Zhou, Xiaoxiao Zhong, Yalin Liu, Haifeng Zhong, Zhijun Hu, Yanchun Liao, Fei Wang, Xianxiang Peng, Guangneng |
author_sort | Zhou, Ziyao |
collection | PubMed |
description | Streptococcus agalactiae is a significant pathogen that can affect both human beings and animals. The extensive current use of antibiotics has resulted in antibiotic resistance. In our previous research, we found that zinc oxide quantum dots (ZnO QDs) had inhibitory effects on antibiotic-resistant microorganisms. In this study, a strain of Streptococcus agalactiae WJYT1 with a broad antibiotic-resistant spectrum was isolated and identified from Lama glama at Sichuan Agricultural University Teaching Animal Hospital. The genome for the resistance and virulence genes was analyzed. Additionally, the antibacterial effects and anti-virulence mechanism of ZnO QDs for S. agalactiae WJYT1 were investigated. The results showed that the genome of S. agalactiae WJYT1 is 1,943,955 bp, containing 22 resistance genes and 95 virulence genes. ZnO QDs have a good antibacterial effect against S. agalactiae WJYT1 by reducing bacterial growth and decreasing the expression of virulence genes, including bibA, hylB, sip, and cip, which provides a novel potential treatment for S. agalactiae. |
format | Online Article Text |
id | pubmed-10343708 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103437082023-07-14 Zinc Oxide Quantum Dots May Provide a Novel Potential Treatment for Antibiotic-Resistant Streptococcus agalactiae in Lama glama Zhou, Ziyao Zhang, Ting Chen, Yixin Zhou, Xiaoxiao Zhong, Yalin Liu, Haifeng Zhong, Zhijun Hu, Yanchun Liao, Fei Wang, Xianxiang Peng, Guangneng Molecules Article Streptococcus agalactiae is a significant pathogen that can affect both human beings and animals. The extensive current use of antibiotics has resulted in antibiotic resistance. In our previous research, we found that zinc oxide quantum dots (ZnO QDs) had inhibitory effects on antibiotic-resistant microorganisms. In this study, a strain of Streptococcus agalactiae WJYT1 with a broad antibiotic-resistant spectrum was isolated and identified from Lama glama at Sichuan Agricultural University Teaching Animal Hospital. The genome for the resistance and virulence genes was analyzed. Additionally, the antibacterial effects and anti-virulence mechanism of ZnO QDs for S. agalactiae WJYT1 were investigated. The results showed that the genome of S. agalactiae WJYT1 is 1,943,955 bp, containing 22 resistance genes and 95 virulence genes. ZnO QDs have a good antibacterial effect against S. agalactiae WJYT1 by reducing bacterial growth and decreasing the expression of virulence genes, including bibA, hylB, sip, and cip, which provides a novel potential treatment for S. agalactiae. MDPI 2023-06-29 /pmc/articles/PMC10343708/ /pubmed/37446776 http://dx.doi.org/10.3390/molecules28135115 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhou, Ziyao Zhang, Ting Chen, Yixin Zhou, Xiaoxiao Zhong, Yalin Liu, Haifeng Zhong, Zhijun Hu, Yanchun Liao, Fei Wang, Xianxiang Peng, Guangneng Zinc Oxide Quantum Dots May Provide a Novel Potential Treatment for Antibiotic-Resistant Streptococcus agalactiae in Lama glama |
title | Zinc Oxide Quantum Dots May Provide a Novel Potential Treatment for Antibiotic-Resistant Streptococcus agalactiae in Lama glama |
title_full | Zinc Oxide Quantum Dots May Provide a Novel Potential Treatment for Antibiotic-Resistant Streptococcus agalactiae in Lama glama |
title_fullStr | Zinc Oxide Quantum Dots May Provide a Novel Potential Treatment for Antibiotic-Resistant Streptococcus agalactiae in Lama glama |
title_full_unstemmed | Zinc Oxide Quantum Dots May Provide a Novel Potential Treatment for Antibiotic-Resistant Streptococcus agalactiae in Lama glama |
title_short | Zinc Oxide Quantum Dots May Provide a Novel Potential Treatment for Antibiotic-Resistant Streptococcus agalactiae in Lama glama |
title_sort | zinc oxide quantum dots may provide a novel potential treatment for antibiotic-resistant streptococcus agalactiae in lama glama |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343708/ https://www.ncbi.nlm.nih.gov/pubmed/37446776 http://dx.doi.org/10.3390/molecules28135115 |
work_keys_str_mv | AT zhouziyao zincoxidequantumdotsmayprovideanovelpotentialtreatmentforantibioticresistantstreptococcusagalactiaeinlamaglama AT zhangting zincoxidequantumdotsmayprovideanovelpotentialtreatmentforantibioticresistantstreptococcusagalactiaeinlamaglama AT chenyixin zincoxidequantumdotsmayprovideanovelpotentialtreatmentforantibioticresistantstreptococcusagalactiaeinlamaglama AT zhouxiaoxiao zincoxidequantumdotsmayprovideanovelpotentialtreatmentforantibioticresistantstreptococcusagalactiaeinlamaglama AT zhongyalin zincoxidequantumdotsmayprovideanovelpotentialtreatmentforantibioticresistantstreptococcusagalactiaeinlamaglama AT liuhaifeng zincoxidequantumdotsmayprovideanovelpotentialtreatmentforantibioticresistantstreptococcusagalactiaeinlamaglama AT zhongzhijun zincoxidequantumdotsmayprovideanovelpotentialtreatmentforantibioticresistantstreptococcusagalactiaeinlamaglama AT huyanchun zincoxidequantumdotsmayprovideanovelpotentialtreatmentforantibioticresistantstreptococcusagalactiaeinlamaglama AT liaofei zincoxidequantumdotsmayprovideanovelpotentialtreatmentforantibioticresistantstreptococcusagalactiaeinlamaglama AT wangxianxiang zincoxidequantumdotsmayprovideanovelpotentialtreatmentforantibioticresistantstreptococcusagalactiaeinlamaglama AT pengguangneng zincoxidequantumdotsmayprovideanovelpotentialtreatmentforantibioticresistantstreptococcusagalactiaeinlamaglama |