Cargando…
Prediction of miRNA–Disease Associations by Cascade Forest Model Based on Stacked Autoencoder
Numerous pieces of evidence have indicated that microRNA (miRNA) plays a crucial role in a series of significant biological processes and is closely related to complex disease. However, the traditional biological experimental methods used to verify disease-related miRNAs are inefficient and expensiv...
Autores principales: | Hu, Xiang, Yin, Zhixiang, Zeng, Zhiliang, Peng, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343850/ https://www.ncbi.nlm.nih.gov/pubmed/37446675 http://dx.doi.org/10.3390/molecules28135013 |
Ejemplares similares
-
Cascade Forest-Based Model for Prediction of RNA Velocity
por: Zeng, Zhiliang, et al.
Publicado: (2022) -
SMALF: miRNA-disease associations prediction based on stacked autoencoder and XGBoost
por: Liu, Dayun, et al.
Publicado: (2021) -
SGAEMDA: Predicting miRNA-Disease Associations Based on Stacked Graph Autoencoder
por: Wang, Shudong, et al.
Publicado: (2022) -
LGBMDF: A cascade forest framework with LightGBM for predicting drug-target interactions
por: Peng, Yu, et al.
Publicado: (2023) -
GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder
por: Li, Lei, et al.
Publicado: (2021)