Cargando…
Design, Synthesis and Evaluation of Praziquantel Analogues and New Molecular Hybrids as Potential Antimalarial and Anti-Schistosomal Agents
Malaria and schistosomiasis are two of the neglected tropical diseases that persistently wreak havoc worldwide. Although many antimalarial drugs such as chloroquine are readily available, the emergence of drug resistance necessitates the development of new therapies to combat this disease. Conversel...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343899/ https://www.ncbi.nlm.nih.gov/pubmed/37446846 http://dx.doi.org/10.3390/molecules28135184 |
_version_ | 1785072846117011456 |
---|---|
author | Kasago, Freddy Mugisho Häberli, Cécile Keiser, Jennifer Masamba, Wayiza |
author_facet | Kasago, Freddy Mugisho Häberli, Cécile Keiser, Jennifer Masamba, Wayiza |
author_sort | Kasago, Freddy Mugisho |
collection | PubMed |
description | Malaria and schistosomiasis are two of the neglected tropical diseases that persistently wreak havoc worldwide. Although many antimalarial drugs such as chloroquine are readily available, the emergence of drug resistance necessitates the development of new therapies to combat this disease. Conversely, Praziquantel (PZQ) remains the sole effective drug against schistosomiasis, but its extensive use raises concerns about the potential for drug resistance to develop. In this project, the concept of molecular hybridization was used as a strategy to design the synthesis of new molecular hybrids with potential antimalarial and antischistosomal activity. A total of seventeen molecular hybrids and two PZQ analogues were prepared by coupling 6-alkylpraziquanamines with cinnamic acids and cyclohexane carboxylic acid, respectively. The synthesised compounds were evaluated for their antimalarial and antischistosomal activity; while all of the above compounds were inactive against Plasmodium falciparum (IC(50) > 6 µM), many were active against schistosomiasis with four particular compounds exhibiting up to 100% activity against newly transformed schistosomula and adult worms at 50 µM. Compared to PZQ, the reference drug, the activity of which is 91.7% at 1 µM, one particular molecular hybrid, compound 32, which bears a para-isopropyl group on the cinnamic acid moiety, exhibited a notable activity at 10 µM (78.2% activity). This compound has emerged as the front runner candidate that might, after further optimization, hold promise as a potential lead compound in the fight against schistosomiasis. |
format | Online Article Text |
id | pubmed-10343899 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103438992023-07-14 Design, Synthesis and Evaluation of Praziquantel Analogues and New Molecular Hybrids as Potential Antimalarial and Anti-Schistosomal Agents Kasago, Freddy Mugisho Häberli, Cécile Keiser, Jennifer Masamba, Wayiza Molecules Article Malaria and schistosomiasis are two of the neglected tropical diseases that persistently wreak havoc worldwide. Although many antimalarial drugs such as chloroquine are readily available, the emergence of drug resistance necessitates the development of new therapies to combat this disease. Conversely, Praziquantel (PZQ) remains the sole effective drug against schistosomiasis, but its extensive use raises concerns about the potential for drug resistance to develop. In this project, the concept of molecular hybridization was used as a strategy to design the synthesis of new molecular hybrids with potential antimalarial and antischistosomal activity. A total of seventeen molecular hybrids and two PZQ analogues were prepared by coupling 6-alkylpraziquanamines with cinnamic acids and cyclohexane carboxylic acid, respectively. The synthesised compounds were evaluated for their antimalarial and antischistosomal activity; while all of the above compounds were inactive against Plasmodium falciparum (IC(50) > 6 µM), many were active against schistosomiasis with four particular compounds exhibiting up to 100% activity against newly transformed schistosomula and adult worms at 50 µM. Compared to PZQ, the reference drug, the activity of which is 91.7% at 1 µM, one particular molecular hybrid, compound 32, which bears a para-isopropyl group on the cinnamic acid moiety, exhibited a notable activity at 10 µM (78.2% activity). This compound has emerged as the front runner candidate that might, after further optimization, hold promise as a potential lead compound in the fight against schistosomiasis. MDPI 2023-07-03 /pmc/articles/PMC10343899/ /pubmed/37446846 http://dx.doi.org/10.3390/molecules28135184 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kasago, Freddy Mugisho Häberli, Cécile Keiser, Jennifer Masamba, Wayiza Design, Synthesis and Evaluation of Praziquantel Analogues and New Molecular Hybrids as Potential Antimalarial and Anti-Schistosomal Agents |
title | Design, Synthesis and Evaluation of Praziquantel Analogues and New Molecular Hybrids as Potential Antimalarial and Anti-Schistosomal Agents |
title_full | Design, Synthesis and Evaluation of Praziquantel Analogues and New Molecular Hybrids as Potential Antimalarial and Anti-Schistosomal Agents |
title_fullStr | Design, Synthesis and Evaluation of Praziquantel Analogues and New Molecular Hybrids as Potential Antimalarial and Anti-Schistosomal Agents |
title_full_unstemmed | Design, Synthesis and Evaluation of Praziquantel Analogues and New Molecular Hybrids as Potential Antimalarial and Anti-Schistosomal Agents |
title_short | Design, Synthesis and Evaluation of Praziquantel Analogues and New Molecular Hybrids as Potential Antimalarial and Anti-Schistosomal Agents |
title_sort | design, synthesis and evaluation of praziquantel analogues and new molecular hybrids as potential antimalarial and anti-schistosomal agents |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343899/ https://www.ncbi.nlm.nih.gov/pubmed/37446846 http://dx.doi.org/10.3390/molecules28135184 |
work_keys_str_mv | AT kasagofreddymugisho designsynthesisandevaluationofpraziquantelanaloguesandnewmolecularhybridsaspotentialantimalarialandantischistosomalagents AT haberlicecile designsynthesisandevaluationofpraziquantelanaloguesandnewmolecularhybridsaspotentialantimalarialandantischistosomalagents AT keiserjennifer designsynthesisandevaluationofpraziquantelanaloguesandnewmolecularhybridsaspotentialantimalarialandantischistosomalagents AT masambawayiza designsynthesisandevaluationofpraziquantelanaloguesandnewmolecularhybridsaspotentialantimalarialandantischistosomalagents |