Cargando…

Synthesis, Crystal Structure, Antibacterial and In Vitro Anticancer Activity of Novel Macroacyclic Schiff Bases and Their Cu (II) Complexes Derived from S-Methyl and S-Benzyl Dithiocarbazate

A series of novel macroacyclic Schiff base ligands and their Cu (II) complexes were synthesised via reacting dicarbonyls of varying chain lengths with S-methyl dithiocarbazate (SMDTC) and S-benzyl dithiocarbazate (SBDTC) followed by coordination with Cu (II) ions. X-ray crystal structures were obtai...

Descripción completa

Detalles Bibliográficos
Autores principales: Break, Mohammed Khaled Bin, Fung, Tan Yew, Koh, May Zie, Ho, Wan Yong, Tahir, Mohamed Ibrahim Mohamed, Elfar, Omar Ashraf, Syed, Rahamat Unissa, Khojali, Weam M. A., Alluhaibi, Turki Mubarak, Huwaimel, Bader, Wiart, Christophe, Khoo, Teng-Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343930/
https://www.ncbi.nlm.nih.gov/pubmed/37446670
http://dx.doi.org/10.3390/molecules28135009
Descripción
Sumario:A series of novel macroacyclic Schiff base ligands and their Cu (II) complexes were synthesised via reacting dicarbonyls of varying chain lengths with S-methyl dithiocarbazate (SMDTC) and S-benzyl dithiocarbazate (SBDTC) followed by coordination with Cu (II) ions. X-ray crystal structures were obtained for compound 4, an SBDTC-diacetyl analogue, and Cu7, an SMDTC-hexanedione Cu (II) complex. Anticancer evaluation of the compounds showed that Cu1, an SMDTC-glyoxal complex, demonstrated the highest cytotoxic activity against MCF-7 and MDA-MB-231 breast cancer cells with IC(50) values of 1.7 µM and 1.4 µM, respectively. There was no clear pattern observed between the effect of chain length and cytotoxic activity; however, SMDTC-derived analogues were more active than SBDTC-derived analogues against MDA-MB-231 cells. The antibacterial assay showed that K. rhizophila was the most susceptible bacteria to the compounds, followed by S. aureus. Compound 4 and the SMDTC-derived analogues 3, 5, Cu7 and Cu9 possessed the highest antibacterial activity. These active analogues were further assessed, whereby 3 possessed the highest antibacterial activity with an MIC of <24.4 µg/mL against K. rhizophila and S. aureus. Further antibacterial studies showed that at least compounds 4 and 5 were bactericidal. Thus, Cu1 and 3 were the most promising anticancer and antibacterial agents, respectively.